| Name | | | |---------------|---------|-----| | Roll No. | Year 20 | _20 | | Exam Seat No. | | | #### COMPUTER GROUP | SEMESTER - III | DIPLOMA IN ENGINEERING AND TECHNOLOGY # FOR COMPUTER GRAPHICS (22318) MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI (Autonomous) (ISO 9001 : 2015) (ISO / IEC 27001 : 2013) #### **VISION** To ensure that the Diploma level Technical Education constantly matches the latest requirements of technology and industry and includes the all-round personal development of students including social concerns and to become globally competitive, technology led organization. #### MISSION To provide high quality technical and managerial manpower, information and consultancy services to the industry and community to enable the industry and community to face the changing technological and environmental challenges. #### **QUALITY POLICY** We, at MSBTE are committed to offer the best in class academic services to the students and institutes to enhance the delight of industry and society. This will be achieved through continual improvement in management practices adopted in the process of curriculum design, development, implementation, evaluation and monitoring system along with adequate faculty development programmes. #### CORE VALUES MSBTE believes in the followings: - Education industry produces live products. - Market requirements do not wait for curriculum changes. - Question paper is the reflector of academic standards of educational organization. - Well designed curriculum needs effective implementation too. - Competency based curriculum is the backbone of need based program. - Technical skills do need support of life skills. - Best teachers are the national assets. - Effective teaching learning process is impossible without learning resources. #### A Laboratory Manual for # **Computer Graphics** (22318) **Semester-III** (CO/CM/CW) ## Maharashtra State Board of Technical Education, Mumbai (Autonomous) (ISO:9001:2015) (ISO/IEC 27001:2013) # MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION #### Certificate | This is to certify that Mi | r. / Ms | | |------------------------------|------------------------------|--------------------------| | Roll No | , of Third Semes | ter of Diploma in | | | | of Institute, | | | | | | (Code:) has | completed the term work | satisfactorily in course | | Computer Graphics (223 | 318) for the academic year 2 | 20 to 20 as | | prescribed in the curriculur | n. | | | | | | | Place: | Enrollment No: | | | Date: | Exam. Seat No: | | | | | | | | | | | Subject Teacher | Head of the Department | Principal | | | Seal of Institution | | #### **Preface** The primary focus of any engineering laboratory/ field work in the technical education system is to develop the much needed industry relevant competencies and skills. With this in view, MSBTE embarked on this innovative 'I' Scheme curricula for engineering diploma programmes with outcome-base education as the focus and accordingly, relatively large amount of time is allotted for the practical work. This displays the great importance of laboratory work making each teacher; instructor and student to realize that every minute of the laboratory time need to be effectively utilized to develop these outcomes, rather than doing other mundane activities. Therefore, for the successful implementation of this outcome-based curriculum, every practical has been designed to serve as a 'vehicle' to develop this industry identified competency in every student. The practical skills are difficult to develop through 'chalk and duster' activity in the classroom situation. Accordingly, the 'I' scheme laboratory manual development team designed the practical's to 'verify the outcomes, rather than the traditional age old practice of conducting practical's to 'verify the theory' (which may become a byproduct along the way). This laboratory manual is designed to help all stakeholders, especially the students, teachers and instructors to develop in the student the pre-determined outcomes. It is expected from each student that at least a day in advance, they have to thoroughly read through the concerned practical procedure that they will do the next day and understand the minimum theoretical background associated with the practical. Every practical in this manual begins by identifying the competency, industry relevant skills, course outcomes and practical outcomes which serve as a key focal point for doing the practical. The students will then become aware about the skills they will achieve through procedure shown there and necessary precautions to be taken, which will help them to apply in solving real-world problems in their professional life. This manual also provides guidelines to teachers and instructors to effectively facilitate student-centered lab activities through each practical exercise by arranging and managing necessary resources in order that the students follow the procedures and precautions systematically ensuring the achievement of outcomes in the students. This course provides an introduction to the principles of Computer graphics. In particular, the course will consider methods for object design, transformation, scan conversion, visualization and modeling of real world. The emphasis of the course will be placed on understanding how the various elements that under-lie Computer graphics (algebra, geometry, algorithms) interact in the design of graphics software systems and also enables student to create impressive graphics easily and efficiently. Although best possible care has been taken to check for errors (if any) in this laboratory manual, perfection may elude us as this is the first edition of this manual. Any errors and suggestions for improvement are solicited and highly welcome. Programme Outcomes (POs) to be achieved through Practical of this Course PO1. Basic knowledge: Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer engineering problem. PO2. Discipline knowledge: Apply Computer Engineering knowledge to solve broad-based Computer Engineering related problems. PO3. Experiments and practice: Plan to perform experiments, practices and to use the results to solve Computer Engineering related problems. PO4. Engineering tools: Apply appropriate Computer Engineering related techniques/ tools with an understanding of the limitations. PO7. Ethics: Apply ethical principles for commitment to professional ethics, responsibilities and norms of the practice also in the field of Computer Engineering. PO8. Individual and team work: Function effectively as a leader and team member in diverse/ multidisciplinary teams. PO9. Communication: Communicate effectively in oral and written form. PO10. Life-long learning: Engage in independent and life-long learning activities in the context of technological changes in the Computer Engineering field and allied industry. ***** #### List of Industry Relevant Skills - The following industry relevant skills of the competency ' **Develop programs using core graphical concepts**' are expected to be developed in you by undertaking the practical's of this laboratory manual. - 1. Draw various graphics objects. - 2. Design CAD-CAM software. - 3. Design games. - 4. Design animations. - 5. Perform 2D and 3D transformations. #### **Practical- Course Outcome matrix** #### **Course Outcomes (COs)** - a. Manipulate visual and geometric information of images. - b. Implement standard algorithms to draw various graphics objects using C program. - c. Develop programs for 2-D and 3-D Transformations. - d. Use projections to visualize objects on view plane. - e. Implement various clipping algorithms. - f. Develop programs to create curves using algorithms. | S. No. | | | CO | CO | CO | CO | CO | |---------|---|-----------|-----------|-----------|----|----|----| | D. 110. | | | b. | c. | d. | e. | f. | | 1 | Write Programs to draw following graphics object using built-in "C" functions. a) Pixel b) Lines | $\sqrt{}$ | - | _ | - | - | - | | | c) Circlesd) Rectanglee) Ellipse | | | | | | | | 2 | Implement DDA algorithm to draw line. | ı | √ | - | ı | ı | - | | 3 | Implement Bresennham's algorithm to draw line | I | √ | - | ı | ı | - | | 4 | Implement Bresennham's algorithm to draw a circle. | - | $\sqrt{}$ | - | 1 | ı | - | | 5 | Write a program to fill Polygon using Flood fill method. | I | V | - | ı | ı | - | | 6 | Write a program to fill Polygon using Boundary fill method. | ı | √ | - | - | ı | - | | 7 | Write a program in C to perform two-
dimensional transformation (Translation
and Scaling) | - | V | $\sqrt{}$ | - | - | - | | 8 | Write a program in C to perform two dimensional transformation (Rotation) | - | √ | √ | - | - | - | | 9 | Write a program in C to perform two-
dimensional transformation (Reflection and
Shearing) | ı | V | V | ı | ı | - | | 10 | Write a program in C to perform three-dimensional transformation for a) Translation b) Scaling | - | $\sqrt{}$ | V | - | - | - | | 11 | Write a program in C to perform three-dimensional transformation for a) Rotation | - | V | V | - | - | - | |----|--|---|----------|---|---|----------|---| | 12 | Write a program to clip line using Cohen-
Sutherland algorithm | - | V | - | - | √ | - | | 13 | Write a program to clip line using Midpoint subdivision algorithm | I | V | ı | ı | √ | - | | 14 | Write a program to clip polygon using Sutherland –Hodgeman algorithm. | ı | V | ı | ı | V | - | | 15 | Write a program to draw Hilbert's Curve | - | √ | - | - | - | √ | | 16 | Write a program to draw Koch curve and Bezier curves | - | V | - | - | - | √ | #### **Guidelines to Teachers** - 1. There will be two sheets of blank pages after every practical for the
student to report other matters (if any), which is not mentioned in the printed practical. - 2. For difficult practical if required, teacher could provide the demonstration of the practical emphasizing of the skills which the student should achieve. - 3. Teachers should give opportunity to students for hands-on after the demonstration. - 4. Assess the skill achievement of the students and COs of each unit. - 5. One or two questions ought to be added in each practical for different batches. For this teachers can maintain various practical related question banks for each course. - 6. For effective implementation and attainment of practical outcomes, teacher ought to ensure that in the beginning itself of each practical, students must read through the complete write-up of that practical sheet. - 7. During practical, ensure that each student gets chance and takes active part in taking observations/ readings and performing practical. - 8. Teacher ought to assess the performance of students continuously according to the MSBTE guidelines. #### **Instructions for Students** Note: Kindly do add specific instructions for students for effective implementation of upon your course, if practical depending needed. - 1. For incidental writing on the day of each practical session every student should maintain a *dated log book* for the whole semester, apart from this laboratory manual which s/he has to *submit for assessment to the teacher* in the next practical session. - 2. For effective implementation and attainment of practical outcomes, in the beginning it of each practical, students need to read through the complete write-up including the practical related questions and assessment scheme of that practical sheet. - 3. Student ought to refer the reference books, lab manuals, etc. - 4. Student should not hesitate to ask any difficulties they face during the conduct of practical. #### **Content Page** #### List of Practical's and Progressive Assessment Sheet | Sr.
No | Practical Outcome | Page
No. | Date of perfor mance | Date of submit-ssion | Assess-
ment
marks(25) | Dated
sign. of
teacher | Remarks
(if any) | |-----------|--|-------------|----------------------|----------------------|------------------------------|------------------------------|---------------------| | 1. | Write Programs to draw following graphics object using built-in "C" functions. a) Pixel b) Lines c) Circles d) Rectangle e) Ellipse | 1 | | | | | | | 2. | Implement DDA algorithm to draw line. | 10 | | | | | | | 3. | Implement Bresennham's algorithm to draw line | 18 | | | | | | | 4. | Implement Bresennham's algorithm to draw a circle. | 25 | | | | | | | 5. | Write a program to fill Polygon using Flood fill method. | 33 | | | | | | | 6. | Write a program to fill Polygon using Boundary fill method. | 40 | | | | | | | 7. | Write a program in C to perform two-
dimensional transformation (Translation
and Scaling) | 48 | | | | | | | 8. | Write a program in C to perform two dimensional transformation (Rotation) | 56 | | | | | | | 9. | Write a program in C to perform two-
dimensional transformation (Reflection
and Shearing) | 65 | | | | | | | 10. | Write a program in C to perform three-
dimensional transformation for
a) Translation
b) Scaling | 74 | | | | | | | 11. | Write a program in C to perform three-dimensional transformation for a) Rotation | 82 | | | | | | | 12. | Write a program to clip line using Cohen-
Sutherland algorithm | 90 | | | | | | | Sr.
No | Practical Outcome | Page
No. | Date of perfor mance | Date of submit-ssion | Assess-
ment
marks(25) | Dated
sign. of
teacher | Remarks
(if any) | |-----------|---|-------------|----------------------|----------------------|------------------------------|------------------------------|---------------------| | 13. | Write a program to clip line using Midpoint subdivision algorithm | 100 | | | | | | | 14. | Write a program to clip polygon using Sutherland –Hodgeman algorithm. | 107 | | | | | | | 15. | Write a program to draw Hilbert's Curve | 116 | | | | | | | 16. | Write a program to draw Koch curve and Bezier curves | 124 | | | | | | | | Total | | | | | | | [•] To be transferred to Proforma of CIAAN-2017. #### Practical No. 1: Programs to draw basic graphic objects #### I. Practical Significance Computer graphics provides different graphics functions to draw various graphics objects. By using these basic graphic functions student will able to construct pixel, line, circle, rectangle, and ellipse and learn the graphics coordinate system to plot objects. #### **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills In this practical, it is expected, to develop the following skills in students #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): • Manipulate visual and geometric properties of images. #### V. Practical Outcome (POs): - Write Programs to draw following graphics object using built-in "C" functions. - a) Pixel - b) Lines - c) Circles - d) Rectangle - e) Ellipse #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. #### VII. Minimum Theoretical Background **Output Primitives:** The **Primitives** are the simple geometric functions that are used to generate various **Computer Graphics** objects required by the User. Some most basic **Output primitives** are point-position (pixel), a straight line, circle, rectangle and ellipse. **Text Mode:** Screen is divided into character positions. Screen is mapped as number of rows and columns. Text mode functions: putch(): Displays single character at cursor position. clrscr(): Clears entire screen. gotoxy (): Positions cursor to specifies location on screen. Textcolor (): Apply color to text. **Graphics Mode:** Screen is divided into pixels. While working in C programming language, default output mode is text mode. To draw graphics objects on screen display mode must be changed from text mode to graphics mode. To change from text mode to graphics mode, use functions below. void initgraph(int *graphdriver, int graph mode, char *pathtodriver); Some of the basic graphic mode functions are ### #include<graphics.h> : The header file must be included for every graphics program 1. void initgraph(int *graphdriver, int graph mode, char *pathtodriver); initgraph() function is used To change from text mode to graphics mode. The graphics driver and graphics mode are the parameters to this function. detectgraph() function is used to find out the graphics driver and graphics mode. #### 2. void closegraph(); closegraph() function closes the graphics mode, deallocates all memory allocated by graphics system and restores the screen to text mode. - 3. putpixel(int x, int y, color); putpixel() function is used to draw pixel at given position(x,y) and with given color. - 4. line (int x1,int y1,int x2,int y2); line function is used to draw a line from point(x1,y1)-Starting point (x2,y2)-Ending point - 5. circle (int x, int y, int radius); Circle function is used to draw a circle with center (x, y) and radius of a circle. - 6. rectangle(int left, int top, int right, int bottom); Rectangle function is used to draw a rectangle. Coordinates of left top and right bottom corner are required to draw the rectangle. - 7. ellipse(int x, int y, start angle, end angle, int xradius, int yradius); Ellipse function is used to draw ellipse with center(x, y), starting angle, end angle, radius of x and y axis. - 8. outtextxy(int x, int y, "text"); outtextxy function is used to insert text at the given position(x,y). #### Procedure: - 1. List different basic graphics functions. - 2. Select the proper function to draw respective object. - 3. Use proper syntax for selected function. - 4. Check the required format of output. #### C Program Code: ``` #include<stdio.h> #include<graphics.h>//must be included for every graphics program #include<conio.h> #include<dos.h> //for including delay function. void main() int gd=DETECT,gm; //gd=detects best available graphics driver, gm =graphics mode. initgraph(&gd,&gm,"C:\\TurboC3\\BGI");// for initializing graph mode // above 2 steps are must for every graphics program. //declaration of any variables must be done before calling initgraph() function. // next write code for producing requiring design or drawing object putpixel(50,50,RED);//plot pixel of red color. outtextxy(55,55,"PIXEL"); line(100,70,200,100);//draws a line segment. outtextxy(220,110,"LINE"); circle(230,50,50);//draws a Circle. outtextxy(290,120,"CIRCLE"); rectangle(300,40,400,100);/draws a Rectangle. outtextxy(420,120,"PIXEL"); ellipse(450,50,0,360,100,175);//draws an Ellipse. outtextxy(450,200,"ELLIPSE"); getch(); ``` #### **Sample Output of the source example:** VIII. Algorithm #### IX.
Flow Chart #### X. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|---------------------------------|--|--------------|-------------| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | For all | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### **XI.** Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in C to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIII. | Result (Output of the Program) | |--------|---| | | | | | | | | | | XIV. | Conclusion(s) | | | | | | | | XV. | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) | | | 1. Find the minimum and maximum coordinates of screen. | | | 2. What is graphics driver and graphics mode? | | | 3. What is path of graphics driver? | | | 4. Find error of the following code: | | | putpixel(20,20); | | | outtextxy(25,25,"PIXEL"); | | | } | | | 5. List four applications of Computer graphics.6. Define terms pixel, line and raster scan graphics. | | | (Space for answers) | | | | | | | | | | | •••••• | | | •••••• | | | | | | | | | | | | | | | | | | •••••• | | | •••••• | | | | | | | | | | | | | | | | | | •••••• | | | | | | Compu | ter Graphics (22318) | | | |-------|--|--|---| XVI. | Exercise | | | | | Attempt Q1. and teacher shall al (Note: Use Point VIII to X and X blank pages provided or attach model). Write a C program to display for a. | III to XV for all relevance pages if needed.) Sollowing objects b. | e following: yant programming exercise use | | | c. | d. | | | | e. | f. | | | (Space for Answers) | |---------------------| • | • | • | • | |---|---|---|---| #### XVII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. http://ecomputernotes.com/computer-graphics/basic-of-computer-graphics #### **XVIII. Assessment Scheme** Computer Graphics (22318) | | Performance indicators | Weightage | |----|---|-----------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | | List of | Studen | ts /Tean | n Memt | ers | |---------|--------|----------|--------|-----| |---------|--------|----------|--------|-----| | 1. |
 | • | • | |
• | • | | • | |
 | • | | • | | • | • | • | • | • | | |
• | |----|------|---|---|--|-------|---|--|---|--|------|---|--|---|--|---|---|---|---|---|--|--|-------| | 2. |
 | • | | | | | | | |
 | | | | | | • | | • | • | | |
• | | 3. |
 | | | | | | | | |
 | | | | | | | | | | | |
• | | 1 | - | Marks Obtained | | | | | | | | | |------------------------|------------------------|-----------|--|--|--|--|--|--|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | | | | | | | | | | | | | #### Practical No. 2: Program to draw line using DDA algorithm. #### I. Practical Significance In Computer graphics, a digital differential analyzer (**DDA**) is used for interpolation of variables over an interval between start and end point. DDAs are used for rasterization of lines, triangles and polygons. #### **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): • Implement standard algorithms to draw various graphics objects using C program. #### V. Practical Outcome (POs): Implement DDA algorithm to draw line. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. #### VII. Minimum Theoretical Background #### DDA algorithm: Digital Differential Analyzer (DDA) algorithm is the simple line generation algorithm. A line connects two end-points. It is a basic element in computer-graphics. To draw a line, you need two points between which you can draw a line. DDA is used for interpolation of variables over an interval between start and end point. DDAs are used for rasterization of lines, triangles and polygons. They can be extended to nonlinear functions, such as perspective correct texture mapping, quadratic curves, and traversing pixels. In its simplest implementation for linear cases such as lines, the DDA algorithm interpolates values in interval by computing for each x_i the equations $x_i = x_{i-1} + 1$, $y_i = y_{i-1} + 1$. #### **Procedure:** #### Sample Output of the source example: #### VIII. Algorithm #### IX. Flow Chart #### X. 'C' Program Code #### XI. Resources required | Sr. | Name of | Specification | Quantity | Remarks | |-----|------------------|------------------------------|--------------|-------------| | No. | Resource | | | | | 1 | Hardware: | Computer (i3-i5 preferable), | | | | | Computer | RAM minimum 2 GB and | | | | | System | onwards but not limited to | As per batch | For all | | 2 | Operating system | Windows XP/Windows | size | Experiments | | | | 7/LINUX version 5.0 or later | | Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or | | | | | | later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XIII. Resources used | S. N | o. Name of Resource | Specification | |-------------|---|--------------------| | 1 | Computer System | 1 | | | with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. I | Result (Output of the Progra | nm) | | • | ••••• | | | | | | | XV. | Conclusion(s) | | | | | | | | | | |)
(
1 | Note: Use Point VIII to X and plank pages provided or attach I. Define the term Rasterization. Write slope intercept form | ion. | | | () | Space for Answers) | | ••••• | | | | •••••• | | | | ••••• | | | | ••••• | | | | ••••• | Computer G | raphics (22318) | | | | | | |------------|------------------------------|-----------------|---|------------------|--------------|-------------| | | | | | | | | | ••••• | ••••• | ••••• | | | | | | ••••• | ••••• | ••••• | | | | | | ••••• | ••••• | ••••• | •••••• | ••••• | | ••••• | | ••••• | ••••• | ••••• | ••••• | ••••• | | ••••• | | ••••• |
••••• | ••••• | •••••• | ••••• | | | | ••••• | ••••• | ••••• | •••••• | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••• | | | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | ••••• | ••••• | ••••• | ••••• | | | | | ••••• | ••••• | ••••• | | | | | | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | | ••••• | ••••• | ••••• | | | | | | | ••••• | ••••• | ••••• | | | | | | ••••• | | | | | | (N | tempt Q1. and ote: Use Point | t VIII to X and | I allot Q. 2/Q.3
XIII to XV formore pages if n | r all relevant p | | xercise use | | i. | Give follow from(3,4) to | | r every iteration | on of DDA al | gorithm to d | raw a line | | | dx | dy | step | xin | yin | | | | | | | | | | | | " | | | | | _ | | | | | | | | - | | | | | | | | | | | | | | | | | ii. Give following values for every iteration of DDA algorithm to draw a line from (-5,-5) to(-12,-12) | dx | dy | step | xin | yin | |----|----|------|-----|-----| (Space for Answers) | |---------------------| Computer Graphics (22318) | |---------------------------| | | | | | | | | | | | | | | #### XVIII. References / Suggestions for further Reading - 1. http://people.csail.mit.edu/fredo/Depiction/1 Introduction/reviewGraphics.pdf. - 2. http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game Devel Book 2. #### XIX. Assessment Scheme | | Performance indicators Weightage | | | | | | | | | | |----|---|------|--|--|--|--|--|--|--|--| | | Process related(10 Marks) | 30% | | | | | | | | | | 1. | Debugging ability | 20% | | | | | | | | | | 2. | Follow ethical practices. | 10% | | | | | | | | | | | Product related (15 Marks) | 70% | | | | | | | | | | 3. | Correctness of algorithm | 15% | | | | | | | | | | 4. | Correctness of Program codes | 30% | | | | | | | | | | 5. | Quality of input/output messaging and output formatting | 10% | | | | | | | | | | 6. | Timely Submission of report | 5% | | | | | | | | | | 7. | Answer to sample questions | 10% | | | | | | | | | | | Total (25 Marks) | 100% | | | | | | | | | | List of | f Stua | lents i | T | 'eam | M | eml | bers | |---------|--------|---------|---|------|---|-----|------| |---------|--------|---------|---|------|---|-----|------| | 1. | | |----|--| | 2. | | | 3. | | | 4. | | |] | Marks Obtain | Dated signature
of Teacher | | |------------------------|------------------------|-------------------------------|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | #### Practical No. 3: Program to draw line using Bresenham's algorithm. #### I. Practical Significance Bresenham's line algorithm is an algorithm that determines the points of an *n*-dimensional raster that should be selected in order to form a close approximation to a straight line between two points. It is commonly used to draw line primitives in a bitmap image. #### **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer engineering problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): • Implement standard algorithms to draw various graphics objects using C program. #### V. Practical Outcome (POs): a) Implement Bresenham's algorithm to draw line. #### VI. Relevant affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. #### VII. Minimum Theoretical Background #### Bresenham's line algorithm Bresenham's line algorithm determines the points of an *n*-dimensional raster that is selected to form a close approximation to a straight line between two points. It is used to draw line primitives in a bitmap image, as it uses only integer addition, subtraction and bit shifting. It is an incremental error algorithm. It is one of the earliest algorithms developed in the field of Computer graphics. Consider a line with initial point (x1, y1) and terminal point (x2, y2) in device space. If $\Delta x = x2 - x1$ and $\Delta y = y2 - y1$, we define the driving axis (DA) to be the x-axis if $|\Delta x| \ge |\Delta y|$, and the y-axis if $|\Delta y| > |\Delta x|$. The DA is used as the "axis of control" for the algorithm and is the axis of maximum movement. Within the main loop of the algorithm, the coordinate corresponding to the DA is incremented by one unit. The coordinate corresponding to the other axis (usually denoted the passive axis or PA) is only incremented as needed. #### **Procedure** - 1. Input the two line end-points, storing the left end-point in (x_0,y_0) - 2. Plot the point (x_0, y_0) - 3. Calculate the constants Δx , Δy , $2\Delta y$, and $(2\Delta y 2\Delta x)$ and get the first value for the decision parameter as: $\mathbf{P_0} = \mathbf{2}\Delta \mathbf{y} \mathbf{2}\Delta \mathbf{x}$ - 4. At each \mathbf{x}_k along the line, starting at $\mathbf{k} = \mathbf{0}$, perform the following test: If $\mathbf{p}_k < \mathbf{0}$, the next point to plot is $(\mathbf{x}_k + \mathbf{1}, \mathbf{y}_k)$ and $\mathbf{p}_{k+1} = \mathbf{p}_k + 2\Delta \mathbf{y}$ Otherwise, the next point to plot is $(\mathbf{x}_k + \mathbf{1}, \mathbf{y}_k + \mathbf{1})$ and $\mathbf{p}_{k+1} = \mathbf{p}_k + 2\Delta \mathbf{y} 2\Delta \mathbf{x}$ - 5. Repeat step 4 (Δx) times. #### Sample Output of the source example: #### VIII. Algorithm IX. Flow Chart X. 'C' Program Code #### XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | | |------------|---------------------------------|--|--------------|-------------|--| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | For all | | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | Experiments | | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--------------------------------| | | | | | | | XV. | | | | | | | | | | | #### **XVI.** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - 1. Explain the term decision parameter. - 2. Write advantages of Bresenham's algorithm over DDA. | (Space for Answers) | |---------------------| ## XVII. Exercise # Attempt Q1. and teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) i. Give following values for every iteration of Bresenham's algorithm to draw a line from (3,4) to (6,8) | Δx | Δy | 2∆x | 2∆y | P | |----|----|-------|-----|---| Δχ Δγ | | | ii. Give following values for every iteration of Bresenham's algorithm to draw a line from(-6,-6) to(-14,-14) | Δx | Δγ | 2∆x | 2Δy | Р | |----|----|-----|-----|---| (Space for Answers) |
 | |------| | | | Computer Graphics (22318) | |---| *************************************** | # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2. http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game Devel Book 2 # XIX. Assessment Scheme | | Performance indicators | Weightage | | | |----|---|-----------|--|--| | | Process related (10 Marks) | 30% | | | | 1. |
Debugging ability | 20% | | | | 2. | Follow ethical practices. | 10% | | | | | Product related (15 Marks) | 70% | | | | 3. | Correctness of algorithm | 15% | | | | 4. | Correctness of Program codes | 30% | | | | 5. | Quality of input/output messaging and output formatting | 10% | | | | 6. | Timely Submission of report | 5% | | | | 7. | Answer to sample questions | 10% | | | | | Total (25 Marks) 100% | | | | | List o | f Students | /Team | Members | |--------|------------|-------|---------| | | | | | | 1. |
 |
 | |----|------|------| | 2. |
 |
 | | 3. |
 |
 | | 4 | | | | Marks Obtained | | | Dated signature
of Teacher | |------------------------|-----------|--|-------------------------------| | Process
Related(10) | Total(25) | | | | | | | | # Practical No. 4: Program to draw circle. # I. Practical Significance It is not easy to display a continuous smooth arc on the Computer screen as our Computer screen is made of pixels organized in matrix form. So, to draw a circle on a Computer screen we should always choose the nearest pixels from a printed pixel so as they could form an arc. There are two popular algorithms for generating a circle – Bresenham's Algorithm and Midpoint Circle Algorithm. These algorithms are based on the idea of determining the subsequent points required to draw the circle. # **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - Communication: Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): • Implement standard algorithms to draw various graphics objects using C program. #### V. Practical Outcome (POs): Implement Bresenham's algorithm to draw circle. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. # VII. Minimum Theoretical Background The equation of circle is $x^2+y^2=r^2$, where (x, y) are coordinates of a center and r is radius. To draw circle in computer graphics we use Bresenham's circle drawing algorithm and Mid Point circle drawing algorithm. It's not easy to display a continuous arc on the raster display. Instead, we have to choose the nearest pixel position to complete the arc. ## Bresenham's Circle algorithm: Bresenham's algorithm is based on the idea of determining the subsequent pixels required to draw the circle. x+1, y is to fins the next pixel to draw the circle. ## **Procedure:** - 1. Set initial values of center of the circle (xc, yc) and (x, y) - 2. Set decision parameter d to d = 3 (2 * r). - 3. Repeat steps 4 to 8 until $x \le y$ - 4. Call drawCircle(int xc, int yc, int x, int y) function. - 5. Increment value of x. - 6. If d < 0, set d = d + (4*x) + 6 - 7. Else, set d = d + 4 * (x y) + 10 and decrement y by 1. - 8. Call drawCircle(int xc, int yc, int x, int y) function. # **Sample Output of the source example:** # VIII. Algorithm # IX. Flow Chart # X. 'C' Program Code # XI. Resources required | Sr. | Name of | Specification | Quantity | Remarks | |-----|------------------|------------------------------|--------------|-------------| | No. | Resource | | | | | 1 | Hardware: | Computer (i3-i5 preferable), | | | | | Computer | RAM minimum 2 GB and | | | | | System | onwards but not limited to | As per batch | For all | | 2 | Operating system | Windows XP/Windows | size | Experiments | | | | 7/LINUX version 5.0 or later | | Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or | | | | | | later with DOSBOX | | | # XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety practices. # XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | | 7 Triny other resource used | | | | | | |--------|--|--|--|--|--|--| | XIV. | Result (Output of the Program) | | | | | | | | | | | | | | | XV. | Conclusion(s) | | | | | | | XVI. | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) 1. Write equation of a circle. 2. Write the algorithm to draw 8-way symmetry of a circle. 3. How the value of decision parameter (d) is calculated. | | | | | | | | (Space for Answers) | | | | | | | ••••• | •••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | | | | | | | | | Computer Graphi | cs (22318) | | | | | | |---------------------------|---------------------|-------------------------------------|-------------------------------------|------------------------|--|--| | | | | | | | | | •••• | | •••••• | ••••• | ••••• | | | | | | | | | ••••• | | ••••• | (Note:
blank p | pt Q1. and teacher | X and XIII to XV ttach more pages i | for all relevant prof
f needed.) | ogramming exercise use | | | | | d | X | у | Plot(x,y) | 2. Dra | w a circle with cer | ter (50,50) and rac | lius 20 by using B | resenham's algorithm. | | | | (Space for Answers) | | | | | | | | ••••• | Computer Graphics (22318) | |---------------------------| # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2. http://www.vrarchitect.net/anu/cg/Circle/symmetry8.en.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game Devel Book 2 ## XIX. Assessment Scheme | | Performance indicators | Weightage | |----|---|-----------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | # List of Students /Team Members | 1. |
 |
 |
• | | | | • |
 | | | |
 | | • | |
• | |----|------|------|-------|--|--|--|---|------|--|---|---|------|-------|---|---|-------| | 2. |
 |
 |
• | | | | |
 | | | |
 | | | |
• | | 3. |
 |
 | | | | | |
 | | | |
 | | • | |
• | | 4. |
 |
 |
 | | | | |
 | | _ | _ | |
_ | | _ |
_ | | | Dated signature
of Teacher | | | |------------------------|-------------------------------|-----------|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No.5: Program to fill polygon. # I. Practical Significance Polygon is a chain of connected line segments. For filling polygons with particular colors, you need to determine the pixels falling on the border of the polygon and those which fall inside the polygon. # **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the
following skills in you ## Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): • Implement standard algorithms to draw various graphics objects using C program. #### V. Practical Outcome (POs): Write a program to fill Polygon using Flood fill algorithm. # VI. Relevant Affective domain related Outcome(s) - a. Experiment with graphics environment. - b. Follow safety/ethical practices. - c. Maintain tools and equipment. # VII. Minimum Theoretical Background Flood Fill Algorithm In Flood Fill algorithm we start with some seed and examine the neighboring pixels, however pixels are checked for a specified interior color instead of boundary color and is replaced by a new color. It can be done using 4 connected or 8 connected region method. #### **Procedure:** Flood-fill (node, target-color, replacement-color): - 1. If target-color is equal to replacement-color, return. - 2. If the color of node is not equal to target-color, return. - 3. Set the color of node to replacement-color. - 4. Perform Flood-fill (one step to the south of node, target-color, replacement-color). Perform Flood-fill (one step to the north of node, target-color, replacement-color). Perform Flood-fill (one step to the west of node, target-color, replacement-color). Perform Flood-fill (one step to the east of node, target-color, replacement-color). - 5. Return. ``` Example: circle(100,100,50); floodfill(100,100,RED); ``` Fills the circle with red colour. # VIII. Algorithm IX. Flow Chart X. 'C' Program Code ## XI Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|---------------------------------|--|--------------|------------------------| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | F 11 | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | For all
Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### XI. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety practices. ## XII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIII. | Result (Output of the Program) | |-------|--------------------------------| | | | | XIV. | Conclusion(s) | | | | | | | ## **XV.** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - 1. Define polygon. - 2. Explain types of polygon. - 3. List Coordinates of neighboring pixels in 8-connected method for seed pixel with coordinates(x,y) - 4. List Coordinates of neighboring pixels in 4-connected method for seed pixel with coordinates(x,y) - 5. Explain inside-outside test of polygon. | (Space for Answers) | |---------------------| #### XVI. Exercise # Attempt Q1. and teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - i. WAP to draw hexagon and fill hexagon with pink color using flood fill algorithm with 8-connected method. - ii. WAP to draw triangle (use line function) and fill it with blue color using flood fill algorithm with 4-connected method. # XVII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 # **XVIII. Assessment Scheme** | | Performance indicators | Weightage | |----|---|-----------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | | List | of Students | /Team | Memhers | |------|--------------|-----------|----------| | LUST | UI DIMMETILD | / I CUIII | MICHUCIS | | 1. | | |----|--| | 2. | | | 3. | | | 1 | | | Marks Obtained | | | Dated signature
of Teacher | |------------------------|------------------------|-----------|-------------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No.6: Program to fill polygon using boundary fill algorithm. # I. Practical Significance Polygon is a chain of connected line segments in a close loop. For filling polygons with particular colors, you need to determine the pixels falling on the border of the polygon and those which fall inside the polygon. # **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broadbased Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - Communication: Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you ## Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. # **IV.** Relevant Course Outcome(s): • Implement standard algorithms to draw various graphics objects using C program. # V. Practical Outcome (POs): Write a program to fill Polygon using 4-connected region or 8-connected region method for Boundary fill algorithm. ## VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety practices. ## VII. Minimum Theoretical Background #### **Boundary Fill Algorithm** Boundary fill algorithm picks a point inside that is a seed point of an object and starts to fill until it hits the boundary of the object. If boundary pixels are not reached, pixels are highlighted and the process is continued until boundary pixels are reached. The color of the boundary and the color that we fill should be different for this algorithm to work. In this algorithm, we assume that color of the boundary is same for the entire object. The boundary fill algorithm can be implemented by 4-connected pixels or 8-connected pixels. Following is a Boundary fill function module to be included in the algorithm for filling "4-connected" region with colour specified in parameter fill colour as f_colour up to a boundary colour specified with parameter boundary colour as b_colour . ## 4 – Connected Boundary Fill ``` boundary_ fill_fun (x, y, f_color, b_color) { If (getpixel (x,y) != b_colour && getpixel (x,y) != f_colour) putpixel(x,y,f_colour) boundary_fill_ fun (x+1, y, f_colour, b_colour); boundary_fill_ fun (x, y+1, f_colour, b_colour); boundary_fill_ fun (x-1, y, f_colour, b_colour); boundary_fill_ fun (x, y-1, f_colour, b_colour); } ``` NOTE: It is assumed that 'getpixel' is standard library function which gives colour of specified pixel and 'putpixel' draws the pixel point with specified colour. #### 8 – Connected Boundary Fill: To enhance speed of filling colour one may look for alternative of 4 – connected as 8-connected. In this algorithm all adjacent pixels will be consider for filling till the match is true. Algorithm is as follows. ``` boundary_fill(x, y, f_colour, b_colour) { if(getpixel(x, y)! = b_colour && getpixel(x, y)! = f_colour) { putpixel(x, y, f_colour); boundary_fill(x + 1, y, f_colour, b_colour); boundary_fill(x - 1, y, f_colour, b_colour); boundary_fill(x, y + 1, f_colour, b_colour); boundary_fill(x, y - 1, f_colour, b_colour); boundary_fill(x + 1, y + 1, f_colour, b_colour); boundary_fill(x + 1, y - 1, f_colour, b_colour); boundary_fill(x + 1, y - 1, f_colour, b_colour); boundary_fill(x - 1, y + 1, f_colour, b_colour); } } ``` #### Procedure: - **Step 1** Initialize the value of seed point seedx, seedy, fcolor and dcol. - **Step 2** Define the boundary values of the polygon. - **Step 3** Check if the current seed point is of default color, then repeat the steps 4 and 5 till the boundary pixels reached. - Step 4 Change the default color with the fill color at the seed point. - Step 5 Recursively follow the procedure with four neighborhood points. - Step 6 Exit ## VIII. Algorithm IX. Flow Chart X. 'C'
Program Code # XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | | |------------|---------------------------------|--|--------------|------------------------|--| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | For all
Experiments | | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | | | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--------------------------------| | | | | | | | XV. | Conclusion(s) | | | | | | | #### **XVI.** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) 1. Compare 4-connected and 8-connected method to fill polygon. | 2. Identify type of polygon in following diagrams. | | |--|---------| | | | | 3. Give the basic difference between flood fill and boundary fill. | | | (Space for Answers) | | | | | | | •••• | | | •••• | | | •••• | | | | | | •••• | | | •••• | | | •••• | | | • • • • | | | | | | •••• | | | •••• | | | | | | | | | •••• | | | | | | | | | | | | •••• | | | •••• | | | •••• | #### XVII. Exercise ## Attempt Q1. and teacher shall allot Q. i/ Q.ii from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - i. Write a program to draw pentagon and fill it with red color using boundary fill algorithm with 8-connected method. - ii. Write a program to draw trapezoid and fill it with blue color using boundary fill algorithm with 4-connected method. | (Space for Answers) | |---------------------| ## XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game Devel Book 2 # XIX. Assessment Scheme | | Weightage | | |----|---|------| | | 30% | | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | # List of Students /Team Members | 1. | | |----|--| | 2. | | | 3. | | | 4. | | | Marks Obtained | | | Dated signature of Teacher | |------------------------|------------------------|-----------|----------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No. 7: Program for two dimensional transformations (translation and scaling). ## I. Practical Significance One of the most common and important tasks in Computer graphics is to transform the coordinates (position, orientation, and size) of objects. Transformations are one of the primary vehicles used in Computer graphics to manipulate objects in two or three-dimensional space. There are different types of transformations such as translation, scaling up or down, rotation, shearing, etc. When a transformation takes place on a 2D plane, it is called 2D transformation. ## **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs for 2-D and 3-D transformations. ## V. Practical Outcome (POs): Write a program for two dimensional transformations. - i) Translation - ii) Scaling ## VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety practices. ## VII. Minimum Theoretical Background #### **Translation:** Giving linear displacement to an object along X and Y axis in a particular direction in a plane is translation. A translation is a process of changing the position of an object in a straight line path from one coordinate location to another. We can translate a point in 2D by adding translation coordinate (t_x, t_y) to the original coordinate (X, Y) to get the new coordinate (X', Y'). By adding translation vector, $$X' = X + t_x$$ $$\mathbf{Y'} = \mathbf{Y} + \mathbf{t_v}$$ The pair (t_x, t_y) is called the translation vector or shift vector. The above equations can also be represented using the column vectors. $$P= rac{[X]}{[Y]}$$ p' = $rac{[X']}{[Y']}$ T = $rac{[t_x]}{[t_y]}$ We can write it as - $$P' = P + T$$ #### Scaling: Scaling is a process that increases and decreases original size of an object by virtue of it the object can be made big or small. This transformation makes necessary changes in the size of an object keeping its original shape in tact. The operation can be carried out for an object by multiplying the coordinate value(x, y) of each vertex by scaling factors Sx and Sy to produce the transformed coordinates (x`, y`). Only condition is to ensure that the base point is remained unaltered. Changing the size of an object is a scaling transformation. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original coordinates of the object with the scaling factor to get the desired result. Let us assume that the original coordinates are (X, Y), the scaling factors are (S_X, S_Y) , and the produced coordinates are (X', Y'). This can be mathematically represented as shown below – $$X' = X \cdot S_X$$ and $Y' = Y \cdot S_Y$ The scaling factor S_X , S_Y scales the object in X and Y direction respectively. The above equations can also be represented in matrix form as below – $$\begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix} \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$$ OR $$P' = P \cdot S$$ Where S is the scaling matrix. The scaling is shown in the following figure. Figure: Scaling before Figure: Scaling after #### **Procedure:** Step 1: Start the program. Step 2: Input the object coordinates Step 3: For Translation a) Enter the translation factors tx and ty. b) Move the original coordinate position (x,y) to a new position (x1,y1).ie. x=x+x1, y=y+y1. c) Display the object after translation Step 4: For Scaling a) Input the scaled factors sx and sy. b) The transformed coordinates (x1,y1), x1=x.sx and y1=y.sy. c) Display the object after scaling Step 5: Stop the Program. # VIII. Algorithm # IX. Flow Chart # X. 'C' Program Code # XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|---------------------------------|--|--------------|------------------------| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | F 11 | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | For all
Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | # XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety practices. ## XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | | | | | | | | | | | | | |-------
---|--|--|--|--|--|--|--|--|--|--|--|--| | | | | | | | | | | | | | | | | XV. | Conclusion(s) | | | | | | | | | | | | | | XVI. | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) 1. Write the transformation matrix for 2D Translation. 2. Write the transformation matrix for 2D Scaling. | | | | | | | | | | | | | | | 3. What does scaling transformation do?4. Whether size of object remains same or changed in case of translation? | | | | | | | | | | | | | | | (Space for Answers) | ••••• | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | #### XVII. Exercise #### Attempt Q1. And teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - 1. Translate the polygon with co-ordinates A(2,5), B(7,10) and C(10,2) by 3 units in x direction and 4 units in y direction. - 2. Scale the polygon with co-ordinates A(2,5),B(7,10) and C(10,2) by 2 units in x direction and 2 units in y direction. - 3. Give a 3x3 homogeneous co-ordinate transformation matrix for each of the following translations. - i. Shift the image to the right 3 units - ii. Shift the image up 2 units - iii. Move the image down ½ unit and right 1 unit - iv. Move the image down 2/3 unit and left 4 units. - 4. Find the transformation matrix that transforms the given square ABCD to half its size with center still remaining at the same position. The co-ordinates of the square are: A(1,1),B(3,1),C(3,3) and D(1,3) and center at (2,2). Also find the resultant co-ordinates of square. | (Space for Answers) | |---------------------| # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 #### XIX. Assessment Scheme | | Weightage | | |----|---|------| | | Process related(10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | | Lis | it oj | of Students /Team Members |-----|-------|---------------------------|-----|--|---|--|---|---|-------|--|--|--|--|--|---|---|------|---|--|--|--| | 1. | | | | | • | | • | • |
• | | | | | | • | |
 | | | | | | 2. | | | • • | | • | | | • | | | | | | | | • |
 | • | | | | | 3. | | | | | • | | | • |
 | | | | | | | |
 | | | | | | 4. | | | | | | | | | | | | | | | | |
 | | | | | | - | Dated signature
of Teacher | | | |------------------------|-------------------------------|-----------|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No. 8: Program for two dimensional transformations (Rotation). # I. Practical Significance One of the most common and important tasks in Computer graphics is to transform the coordinates (position, orientation, and size) of objects. It is a process by virtue of which the object can rotate to specific angle. A 2-D rotation is applied to an object by repositioning it along a circular path in the x, y plane. To generate a rotation, we give a rotation angle ' θ ' and the position of the rotation point about which the object is to be rotated. # **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. ## III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs for 2-D and 3-D transformations. #### V. Practical Outcome (POs): Write a program for two dimensional Rotations. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety practices. ## VII. Minimum Theoretical Background #### **Rotation:** Giving angular displacement to an object is a rotation. In rotation, we rotate the object at particular angle θ (theta) from its origin. From the following figure, we can see that the point P(X, Y) is located at angle φ from the horizontal X coordinate with distance r from the origin. Consider, you want to rotate it at the angle θ . After rotating it to a new location, you will get a new point P' (X', Y'). The original coordinate of point P(X, Y) can be represented as – $$X = r \cos \phi \dots (1)$$ $$Y = r \sin \phi \dots (2)$$ Same way we can represent the point P'(X', Y') as – $$x' = r \cos (\phi + \theta) = r \cos \phi \cos \theta - r \sin \phi \sin \theta \dots (3)$$ $$y' = r \sin (\phi + \theta) = r \cos \phi \sin \theta + r \sin \phi \cos \theta \dots (4)$$ Substituting equation (1) & (2) in (3) & (4) respectively, we will get transformation equations for rotating point P(x,y) through an angle θ about the origin: $$x' = x \cos \theta - y \sin \theta$$ $$y' = x \sin \theta + y \cos \theta$$ Representing the above equation in matrix form, $$[X'Y'] = [XY] \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} OR$$ P' = P . R Where R is the rotation matrix and is represented as $$R = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$$ The rotation angle can be positive and negative (i.e. clockwise or counterclockwise) For positive rotation angle, we can use the above rotation matrix. However, for negative angle rotation, the matrix will change as shown below – $$\begin{split} R = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} \\ = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} (\because \cos(-\theta) = \cos\theta \text{ and } \sin(-\theta) = -\sin\theta) \end{split}$$ #### Procedure: Step 1: Start the program. Step 2: Input the object coordinates Step 3: For Rotation - a) Enter the radian for rotation angle θ . - b) Rotate a point at position (x,y,z) through an angle θ about the origin $x1=x\cos\theta-y\sin\theta$, $y1=y\cos\theta+x\sin\theta$. - c) Display the object after rotation Step 4: Stop the Program. ## VIII. Algorithm | Computer | Graphics | (22318) | |----------|-----------------|---------| | | | | IX. Flow Chart X. 'C' Program Code # XI. Resources required | Sr.
No. | Name of
Resource | Specification | Quantity | Remarks | |------------|---------------------------------|--|--------------|------------------------| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | For all
Experiments | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. ## XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--------------------------------| | | | | | | | XV. |
Conclusion(s) | | | | | | | | | | #### **XVI.** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. - 1. Write the transformation matrix for 2D Rotation. - 2. Write rotation matrix for a rotation angle 30° . | (Space for Answers) | |---------------------| #### XVII. Exercise ## Attempt Q1. And teacher shall allot Q. 2/Q.3 from the following: - 1. A point (4, 3) is rotated counterclockwise by an angle of 45⁰. Find the rotation matrix and the resultant point. - 2. Perform a counterclockwise 45⁰ rotation of triangle A (2, 3), B (5, 5), C (4, 3) about point (1,1). - 3. Find a transformation of triangle A(1,0),B(0,1),C(1,1) by - i. Rotating 45° about the origin and then translating one unit in x and y direction. - ii. Translating one unit in x and y direction and then rotating 45⁰ about the origin. - 4. Consider the square A(1,0),B(0,0),C(0,1),D(1,1).Rotate the square by 45⁰ anticlockwise direction. | (Space for Answers) | |---------------------| Computer Graphics (22318) | |---------------------------| # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 #### XIX. Assessment Scheme | | Performance indicators | Weightage | |----|---|-----------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | # List of Students /Team Members | 1. | | |----|--| | 2. | | | 3. | | | 4 | | | Marks Obtained | | | Dated signature
of Teacher | |------------------------|------------------------|-----------|-------------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No. 9: Program for two dimensional transformations (Reflection and Shearing) ### I. Practical Significance One of the most common and important tasks in Computer graphics is to transform the coordinates (position, orientation, and size) of objects. It is a transformation which slants or bends an object to specified direction. There are two types of shearing transformation available in Computer graphics. One which slants x coordinate values is known as X shearing and one that slants y coordinate values is known as Y shearing. Irrespective of shearing only one co-ordinate is change its coordinate and other values are same. In Reflection the mirror copy of an object is generated based on the axis to which reflection is to be made. ## **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Electronics related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you. #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. ## **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs for 2-D and 3-D transformations. #### V. Practical Outcome (POs): Write a program for transformation and shearing. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. # VII. Minimum Theoretical Background #### 1. Reflection:- Reflection is a transformation that results into a mirror image of original object. In reflection transformation, the size of the object does not change. The mirror image of any image for 2D reflection is generated with respect to the "Axis of Reflection". For that we need to rotate main object 180 Degrees about the reflection axis. Reflection transformation is generally implemented with respect to the coordinate axes or its coordinate origin as the scaling transformation with t minus (negative) scaling factors. ## 2. Shear: Slanting the shape of an object is shearing transformation. There are two shear transformations X-Shear and Y-Shear. One shifts X coordinates values and other shifts Y coordinate values. In fact, in both the cases only one coordinate changes its coordinates and other preserves its values. Shearing is also called as Skewing. ### X-Shear The X-Shear preserves the Y coordinate and changes are made to X coordinates, which causes the vertical lines to tilt right or left as shown in below figure. The transformation matrix for X-Shear can be represented as – $$X' = X + Sh_x \cdot Y$$ $Y' = Y$ ## Y-Shear The Y-Shear preserves the X coordinates and changes the Y coordinates which causes the horizontal lines to transform into lines which slopes up or down as shown in the following figure. The Y-Shear can be represented in matrix from as – #### **Procedure:** - Step 1: Start the program. - Step 2: Input the object coordinates - Step 3: For Shearing - a) Input the shearing factors shx and shy. - b) Shearing related to x axis: Transform coordinates x1=x+shx*y and y1=y. - c) Shearing related to y axis: Transform coordinates x1=x and y1=y+shy*x. - d) Input the xref and yref values. - e) X axis shear related to the reference line y-yref is x1=x+shx(y-yref) and y1=y. - f) Y axis shear related to the reference line x=xref is x1=x - g) Display the object after shearing # Step 4: For Reflection Reflection can be performed about x axis and y axis. - a) Reflection about x axis: The transformed coordinates are x1=a and y1=-y. - b) Reflection about y axis: The transformed coordinates are x1=x and y1=y. - c) Display the object after reflection Step 5: Stop the Program. # VIII. Algorithm IX. Flow Chart X. 'C' Program Code # XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|---------------------------------|--|--------------|------------------------| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per batch | For all
Experiments | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | size | | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety practices. ## XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--------------------------------| | | | | | | | XV. | Conclusion(s) | | | | | | | #### **XVI. Practical Related Questions** Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. - 1. Write the transformation matrix for 2D Reflection. - 2. Write the transformation matrix for 2D Shear. - 3. Differentiate between X-shear and Y-shear. - 4. Define Reflection and Shearing. | (Space for Answers) | |--| XVII. Exercise Attempt Q1. And teacher shall allot Q. 1/Q.2 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) | | A point (4, 3) is rotated counterclockwise by an angle of 45⁰. Find the rotation matrix and the resultant point. Apply the Shearing transformation to square with A(0,0),B(1,0),C(1,1) and D(0,1) as given below: Shear parameter value of 0.5 relative to the line Yref= -1; Shear parameter value of 0.5 relative to the line Xref= -1; | | 2.
Apply shearing transformation to square with $A(0,0)$, $B(1,0)$, $C(1,1)$ and $D(0,1)$. If $Sh_x = 0.5$ then find the resultant co-ordinates. | | (Space for Answers) | | | | | | | | | | | | Computer Graphics (22318) | |---------------------------| # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 ## XIX. Assessment Scheme | | Performance indicators | Weightage | |----------------------------|---|-----------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability 20% | | | 2. | Follow ethical practices. 10% | | | Product related (15 Marks) | | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% (25) | | List of Students /Team Member | |-------------------------------| |-------------------------------| | 1. | | |----|--| | 2. | | | 3. | | | 4. | | | - | Marks Obtain | Dated signature
of Teacher | | |------------------------|------------------------|-------------------------------|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No. 10: Program for three dimensional transformations (Translation and Scaling) # I. Practical Significance 3D Computer graphics are graphics that use a three dimensional representation of geometric data that is stored in the Computer for the purposes of performing calculations and rendering 2D images. 3D transformations are extended from 2D methods by including considerations for the Z coordinate. ## **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. ## III. Competency and Practical skills This practical is expect to develop the following skills in you. # Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs for 2-D and 3-D transformations. #### V. Practical Outcome (POs): Write a program for three dimensional Translation and Scaling. ### VI. Relevant Affective domain related Outcome(s) - a. Plan, construct, compile, debug and test programs. - b. Experiment with graphics environment. - c. Follow safety practices. # VII. Minimum Theoretical Background #### Transformations in 3D:- As, 2D transformations, it has a coordinate system with three axes as a basis. In this learning material all reasoning in space is done in a right hand system. This means that if I put my right hand vertically down, with my fingers along the positive x-axis, and bend the hand towards the y-axis, the thumb will point up along the positive z-axis. We use homogeneous coordinates from the beginning. This means that the general transformation matrix is a 4x4 matrix, and that the general vector form is a column vector with four rows. $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix}$$ #### 1. Translation: Moving of object is called translation. A translation in space is described by t_x , t_y and t_z . It is easy to see that this matrix realizes the equations: $$P'=T.P$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ This matrix representation is equivalent to following three equations. $$X'=X+t_x$$ $$Y'=Y+t_v$$ $$Z'=Z+t_z$$ #### 2. Scaling: Changing the size of an object is called scaling transformation. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original coordinates of the object with the scaling factor to get the desired result. The following figure shows the effect of 3D scaling – In 3D scaling operation, three coordinates are used. Consider that, the original coordinates are (X, Y, Z), scaling factors are (S_X, S_Y, S_z) respectively, and the produced coordinates are (X', Y', Z'). This can be mathematically represented in matrix form as below – $$S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ $$P' = P \cdot S$$ $$[X' \ Y' \ Z' \ 1] = [X \ Y \ Z \ 1] \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ $$= [X \cdot S_x \ Y \cdot S_y \ Z \cdot S_z \ 1]$$ Scaling in space is described by S_x , S_y and S_z . We see that this matrix realizes the following equations: $$X'=X\cdot S_x$$ $Y'=Y\cdot S_y$ $Z'=Z\cdot S_z$ #### Procedure: - Step 1: Start the program. - Step 2: Input the object coordinates - Step 3: For Translation - a) Enter the translation factors t_x , t_y and t_z . - b) Move the original coordinate position (x,y,z) to a new position - (x1,y1,y1).ie. x=x+x1, y=y+y1 and z=z+z1. - c) Display the object after translation Step 4: For Scaling - a) Input the scaled factors sx,sy and sz. - b) The transformed coordinates (x1,y1,z1), $x1=x.s_x$, $y1=y.s_y$ and $z1=z.s_x$. - c) Display the object after scaling Step 5: Stop the Program. # VIII. Algorithm ## IX. Flow Chart # X. 'C' Program Code # XI. Resources required | Sr. | Name of | Specification | Quantity | Remarks | | |-----|------------------|------------------------------|--------------|-------------|--| | No. | Resource | | | | | | 1 | Hardware: | Computer (i3-i5 preferable), | | | | | | Computer | RAM minimum 2 GB and | | | | | | System | onwards but not limited to | As per batch | For all | | | 2 | Operating system | Windows XP/Windows | size | Experiments | | | | | 7/LINUX version 5.0 or later | | F | | | 3 | Software | Turbo C /C++ Version 3.0 or | | | | | | | later with DOSBOX | | | | # XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. ## XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--| | | | | | | | | | | XV. | Conclusion(s) | | | | | | | | XVI. | Practical Related Questions | | | Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) | | | 1. Write the transformation matrix for 3D Translation. | | | 2. Write the transformation matrix for 3D Scaling.3. What Z- Coordinate indicates in 3D transformations. | | | 4. Explain Homogeneous coordinates. | | | (Space for Answers) | #### XVII. Exercise # Attempt Q1. And teacher shall allot Q. 1/Q.1 from the following: - 1. Write a program to draw a cube in C by using 'bar3d' function. Translate the cube by 75 units in X, 75 units in Y and 75 units in Z direction. - 2. Write a program to draw a cube in C by using 'bar3d' function. Scale it to double of its original size. | (Space for Answers) | |---------------------| # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 #### XIX. Assessment Scheme | Performance indicators Weighta | | | |--------------------------------|---|------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow
ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | ## List of Students /Team Members | l . | | |-----|--| | 2. | | | 3. | | | 1. | | | Marks Obtained | | | Dated signature
of Teacher | |------------------------|------------------------|-----------|-------------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No. 11: Program for three dimensional transformations (Rotation) # I. Practical Significance 3D Computer graphics are graphics that use a three dimensional representation of geometric data that is stored in the Computer for the purposes of performing calculations and rendering 2D images. To emphasize working with the real world problem statements and games 3D transformations are used. # **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - Engineering tools: Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. # III. Competency and Practical skills This practical is expect to develop the following skills in you ## Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. ## **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs for 2-D and 3-D transformations. #### V. Practical Outcome (POs): Write a program for three dimensional Rotation. #### VI. Relevant Affective domain related Outcome(s) - a. Plan, construct, compile, debug and test programs. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. # VII. Minimum Theoretical Background Rotation:- 3D rotation is not same as 2D rotation. In 3D rotation, we have to specify the angle of rotation along with the axis of rotation. We can perform 3D rotation about X, Y, and Z axis. They are represented in the matrix form as below – $$R_x(\Box) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2 & -\sin 2 & 0 \\ 0 & \sin 2 & \cos 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$ $$R_y(\Box) = \left(\begin{array}{ccccc} \cos \mathbb{Z} & 0 & \sin \mathbb{Z} & 0 \\ & 0 & 1 & 0 & 0 \\ & -\sin \mathbb{Z} & 0 & \cos \mathbb{Z} & 0 \\ & 0 & 0 & 0 & 1 \end{array} \right)$$ $$R_{z}(\square) = \begin{pmatrix} cos ? & -sin ? & 0 & 0 \\ sin ? & cos ? & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$ The following figure explains the rotation about various axes – X-axis rotation- Y-axis rotation- Z-axis rotation- #### **Procedure:** **Step 1**: Start the program. **Step 2**: Input the object coordinates **Step 3**: For Rotation - a) Enter the radian for rotation angle θ . - b) Perform rotation about each axis. i) Z-Axis Rotation Z-axis rotation is identical to the 2D case: $$x' = x*\cos\theta - y*\sin\theta$$ $$y' = x*\sin\theta + y*\cos\theta$$ $$z' = z$$ ii) X-Axis Rotation X-axis rotation looks like Z-axis rotation if replace: $$y' = y*\cos\theta - z*\sin\theta$$ $$z' = y*\sin\theta + z*\cos\theta$$ $$x' = x$$ iii) Y-Axis Rotation Y-axis rotation looks like Z-axis rotation if replace: $$z' = z*\cos\theta - x*\sin\theta$$ $$x' = z*\sin\theta + x*\cos\theta$$ $$y' = y$$ c) Display the object after rotation Step 4: Stop the Program. # VIII. Algorithm IX. Flow Chart X. 'C' Program Code # XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|---------------------------------|--|----------|------------------------| | 1 | Hardware:
Computer
System | Computer (i3-i5 preferable), RAM minimum 2 GB and onwards but not limited to As per batch | | F11 | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | | For all
Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. ## XIII. Resources used | S.
No. | Name of Resource | Specification | |-----------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | | | |------|--------------------------------|--|--| XV. | Conclusion(s) | #### **XVI.** Practical Related Ouestions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. - 1. Write the transformation matrix for 3D Rotation about Z-axis. - 2. Write the transformation matrix for 3D Rotation about X-axis. | 3. Write the transformation matrix for 3D Rotation about Y-axis. (Space for Answers) | | | | |---|--|--|--| ## XVII. Exercise # Attempt Q1. And teacher shall allot Q. 2/Q.3 from the following: - 1. WAP to draw a cube in C by using 'bar3d' function. Rotate the cube by 45⁰ around X-axis. - 2. WAP to draw the triangle defined by three vertices A(0,2,1), B(2,3,0), C(1,2,1). Rotate the given triangle around Y-axis. | (Space for Answers) | |---------------------| # XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 ## XIX. Assessment Scheme | | Performance indicators | Weightage | |----------------------------|---|-----------| | Process related (10 Marks) | | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | # List of Students /Team Members | 1. | | |----|--| | 2. | | | 3. | | | 1. | | | Marks Obtained | | | Dated signature of Teacher | |------------------------|------------------------|-----------|----------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | # Practical No.12: Program to clip line using cohen sutherland line clipping algorithm # I. Practical Significance The process that identifies which portion is inside and which portion is outside the specified region of space is called as a clipping. The Cohen–Sutherland algorithm is a line clipping algorithm which uses four digit code to point out which of nine regions contain the end point of the line. The four bit code is called as region code. # **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer Programming technologies and tools with an understanding of the limitations. - Communication: Communicate effectively in oral and written form. # III. Competency and Practical skills This practical is expect to develop the following skills in you ## Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. ## **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Implement various clipping algorithms using C. ## V. Practical Outcome (POs): Write a program to clip line using Cohen - Sutherland line clipping algorithm. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. ## VII. Minimum
Theoretical Background #### Line clipping algorithm: It is the process of removing lines or portions of lines outside of an area called clipping region or window. Any line or the part of any line which is outside the clipping window is removed. Following figure shows the lines before and after clipping the window. Before clipping After Clipping Lines fall into one of the following clipping categories: - a. **Completely Visible:** These lines are said to be interior to the clipping window. Both end points of these lines are interior to window. In the above figure line P1P2 is completely visible. - b. **Completely Invisible:** If both end points of a line are outside the window and not crossing the boundaries the line is completely invisible in window. In above figure P3P4, P9P10 are completely invisible. - c. **Partially Visible:** If the lines cross the clipping boundaries the lines are partially visible. Line P5P6, P7P8 is partially visible. #### Four bit codes (Region Codes): To find the clipping category of the line, four bit code is used. The codes for the end points of the lines are assigned by considering the region in which the end points resides. | 1001 | 1000 | 1010 | |------|-------------------------|------| | 0001 | 0000
Clipping Region | 0010 | | 0101 | 0100 | 0110 | Each bit in the region code is used to indicate one of the four relative co-ordinates positions of point with respect to clipping window to left, right, top and bottom. Four bit is assigned to points as, | Top | Bottom | Right | Left | |-----|--------|-------|------| | 4 | 3 | 2 | 1 | - i. Bit 1 is set to 1 if point lies to the left of the window. - ii. Bit 2 is set to 1 if point lies to the right of the window. - iii. Bit 3 is set to 1 if point lies to the below of the window. - iv. Bit 4 is set to 1 if point lies to the above of the window. - v. Otherwise the bit is set to zero. # **Example:** # Four bit code for the end points are, | P1 | 0000 | P6 0000 | |----|------|----------| | P2 | 0000 | P7 0100 | | Р3 | 0001 | P8 0010 | | P4 | 0001 | P9 1000 | | P5 | 0001 | P10 0010 | # Identifying category of line using four bit code: From the four bit codes of all line end points clipping categories of lines are determined as below, - 1. If four bit codes of both endpoints of the line is 0000 then the line is completely visible. - 2. If bitwise logical AND of four bit codes of both endpoints is not 0000 then the line is completely invisible. - 3. If bitwise logical AND of four bit codes of both endpoints is 0000 then the line is partially visible and needs clipping. ### To find out intersection boundary: Choose the end points whose region code is not 0000. Then depending upon the position of the 1 in region code following scheme decides with which boundary line intersects. - 1. If bit 1 is 1, intersects with line $Y=Y_{max}$ (top boundary). - 2. If bit 2 is 1, intersects with line $Y=Y_{min}$ (bottom boundary). - 3. If bit 3 is 1, intersects with line $X=X_{max}$ (right boundary). - 4. If bit 4 is 1, intersects with line $X=X_{min}$ (left boundary). ## To find out co-ordinates of intersection point: Once line of intersection is known then point of intersection can be calculated as, • If boundary line is vertical, then $$X_i=X_{min}$$ or X_{max} $Y_i=Y_1+m(X_i-X_1)$ • If boundary line is Horizontal, then $$X_i = X_1 + (Y_i - Y_1)/m$$ Where, m is slope of line = $$Y_2$$ - Y_1 X_2 - X_1 (X_1,Y_1) = end point of line $$(X_i, Y_i)$$ = intersection point Now replace end points (X_1, Y_1) with intersection point (X_i, Y_i) and display this new line joining two intersection points or a line joining one intersection point and other end point in 0000 region code. #### **Procedure:** - 1. Given a line segment with endpoint $P_1=(X_1,Y_1)$ and $P_2=(X_2,Y_2)$ - 2. Compute the 4-bit codes for each endpoint. - If both codes are **0000**,(bitwise OR of the codes yields 0000) line lies completely **inside** the window: pass the endpoints to the draw routine. If both codes have a 1 in the same bit position (bitwise AND of the codes - is **not** 0000), the line lies **outside** the window. It can be trivially rejected. - 3. If a line cannot be trivially accepted or rejected, at least one of the two endpoints must lie outside the window and the line segment crosses a window edge. This line must be **clipped** at the window edge before being passed to the drawing routine. - 4. Examine one of the endpoints, say $P_1=(X_1,Y_1)$. Read P_1 's 4-bit code in order: **Left**-to-**Right**, **Bottom**-to-**Top**. - 5. When a set bit (1) is found, compute the intersection I of the corresponding window edge with the line from P_1 to P_2 . Replace P_1 with I and repeat the procedure. ## VIII. Algorithm | Computer Graphics (22318) | Compute | er Graphics | s (22318) | |---------------------------|---------|-------------|-----------| |---------------------------|---------|-------------|-----------| IX. Flow Chart X. 'C' Program Code #### XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|------------------------------|--|------------|-------------| | 1 | Hardware:
Computer System | Computer (i3-i5 preferable), RAM minimum 2 GB and onwards but not limited to | As per | For all | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | batch size | Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--------------------------------| | | | | | | | | | | | | | XV. | Conclusion(s) | | XV. | Conclusion(s) | | XV. | Conclusion(s) | #### **XVI.** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - i. Define clipping. - ii. How to calculate intersection points of a line if line is partially visible. | | iii. | Give algori | | ssible | e coi | nditi | ions | to | clip | line | usi | ng C | Coher | ı Su | ther | land | line | clip | pping | |---|-------------|---|-----------------|--------|---|---------------|---------------|-------------|-------|---------------|---------------|-------------------|-------------------|---|---------------|---------------|-------------------|---------------|---| | | | Č | | | | | (Spa | ace ' | for A | Ansv | vers |) | | | | | | | | | | | | | | | | (~ I | | | | | , | | | | | | | | | | ••••• | | ••••• | | | • • • • • • • | | | | | | | | | | | | | • | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | • • • • • • • | ••••• | • • • • • • | ••••• | | • • • • • • • | • • • • • • • • • | • • • • • • • | ••••• | • • • • • • • | • • • • • • | • • • • • • • • | • • • • • • • | • • • • • • • • • • | • | ••••• | ••••• | ••••• | ••••• | ••••• | • • • • • • | ••••• | • • • • • • | ••••• | • • • • • • | • • • • • • • | • • • • • • • • | • • • • • • • | ••••• | • • • • • • | • • • • • • | • • • • • • • • | • • • • • • | • • • • • • • • • | • | ••••• | • | ••••• | ••••• | ••••• | • • • • • • | ••••• | • • • • • • | ••••• | • • • • • • | • • • • • • • | • • • • • • • • | • • • • • • | • • • • • • • | • • • • • • | • • • • • • | • • • • • • • | • • • • • • • | • • • • • • • • • • | ••••• | ••••• | | • • • • • • • • | ••••• | • | • • • • • • | ••••• | • • • • • • | ••••• | • • • • • • | • • • • • • • | • • • • • • • • | • • • • • • • | • • • • • • • | • • • • • • | • • • • • • | • • • • • • • | • • • • • • • | • | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | • • • • • • • | ••••• | • • • • • • | | | • • • • • • • | • • • • • • • • • | • • • • • • • | ••••• | ••••• | • • • • • • • | • • • • • • • • | • • • • • • • | • • • • • • • • • • | | | | | ••••• | | | | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | • • • • • • | ••••• | • • • • • • | ••••• | | • • • • • • • | • • • • • • • • | • • • • • • • | ••••• | • • • • • • | • • • • • • | • • • • • • • | • • • • • • • | • • • • • • • • • • | • | ••••• | ••••• | ••••• | ••••• | ••••• | • • • • • • | ••••• | • • • • • • | ••••• | • • • • • • | • • • • • • • | • • • • • • • • | • • • • • • • | ••••• | • • • • • • | • • • • • • | • • • • • • • | • • • • • • • | • • • • • • • • • | • • • • • •
• • • • • • • • • • • • • • | ••••• | ••••• | ••••• | ••••• | ••••• | • • • • • • | ••••• | • • • • • • | ••••• | ••••• | • • • • • • • | • • • • • • • • • | • • • • • • • | • | • • • • • • • | ••••• | • • • • • • • | • • • • • • • | • | | | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | ••••• | | • • • • • • • | ••••• | | | | | | • • • • • • • • • | • | • • • • • • • | • • • • • • | • • • • • • • • • | • • • • • • • | •••••• | • • • • • • | •••••• | ••••• | ••••• | ••••• | • • • • • • | • • • • • • • | • • • • • • | | • • • • • • • | • • • • • • • | • • • • • • • • | • • • • • • • | ••••• | • • • • • • | • • • • • • | • • • • • • • • | • • • • • • • | • • • • • • • • • | | XVII. | Ex | ercise | | | | | | | | | | | | | | | | | | ## Attempt Q1. and teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) 1. Write four bit code for following lines and determine clipping categories of each line. | (Space for Answers) | |---------------------| ## XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 #### XIX. Assessment Scheme | | Performance indicators | Weightage | |----|---|-----------| | | Process related(10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | | Listo | f Students | /Team | Members | |--------|------------|-----------|-----------| | LUGE U | , Dinacino | / I Culli | MICHIGOUS | | 1. |
 | |----|------| | 2. |
 | | 3. |
 | | 4 | | | - | Marks Obtain | ed | Dated signature
of Teacher | |------------------------|------------------------|-----------|-------------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | ## Practical No.13: Program to clip line using midpoint subdivision line clipping algorithm. #### I. Practical Significance Clipping process removes objects, lines, or parts of objects that are outside the viewing pane. The strength of this algorithm over the Cohen-Sutherland algorithm is that it requires no floating point arithmetic to find the point of intersection with the line and the clip boundary. The midpoint subdivision algorithm clips a line by finding the endpoints of the visible portion of the line segment. Each endpoint can be found by an identical process and given appropriate hardware; this can be done in parallel for both endpoints. ## **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Implement various clipping algorithms using C. #### V. Practical Outcome (POs): Write a program to clip line using Midpoint Subdivision line clipping algorithm. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. ## VII. Minimum Theoretical Background Midpoint Subdivision Line clipping algorithm Midpoint subdivision algorithm works same as Cohen-Sutherland algorithm. It assigns four bit codes at end point of line to find out clipping category of line like completely visible, completely invisible and partially visible. Lines with partially visible category send for clipping. Demonstration of midpoint subdivision algorithm for clipping line P1P2: - 1) Four digit for points P1 and P2 are 1000 and 0010 respectively. - 2) As ANDing of four digit codes is 0000 line P1P2 is partially visible. - 3) Divide line P1P2 at mid-point P3 forming two segments P1P3 and P3P2, apply visibility test on both segments. Both lines are in partially visible category and hence we have to again subdivide it. 4) Divide line P1P3 at midpoint P4 and P3P2 at midpoint P5 check all line segments for their visibility. 5) Line P1P4 and line P2P5 are completely invisible and hence removed. Line P4P3 and Line P3P5 are partially visible. Line P4P3 and P3P5 are subdivided again and this procedure continues until all the visible and invisible lines are found. If P1(x1,y1) and P2(x2,y2) are two points then midpoint P3(x3,y3) is calculated as $$x3=(x1+x2)/2$$ $$y3=(y1+y2)/2$$ #### VIII. Algorithm ## IX. Flow Chart ## X. 'C' Program Code ## XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | |------------|------------------------------|---|------------|-------------| | 1 | Hardware:
Computer System | CComputer (i3-i5 preferable),
RAM minimum 2 GB and
onwards but not limited to | As per | For all | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | batch size | Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety practices. #### XIII. Resources used | S. No. | Name of Resource | Specification | |------------------------------------|--|--| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | V. Re | sult (Output of the Progra | m) | | •••• | | | | . Co | onclusion(s) | | | •••• | | | | No
mo | ore such questions so as to e | ensure the achievement of identified CO. | | No
mo
(N
bla
i.
ii. | te: Below given are few some such questions so as to cote: Use Point VIII to X and the pages provided or attach Calculate coordinates of
many Compare Cohen Sutherland | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise us more pages if needed.) idpoint between two points p1(-10,20)andp2(50,10). d and Midpoint subdivision line clipping algorithm. | | No
mo
(N
bla
i.
ii. | te: Below given are few some such questions so as to cote: Use Point VIII to X and the pages provided or attach Calculate coordinates of magnetic Compare Cohen Sutherland Write disadvantages of Microscopic Compares of Microscopic Cohen Sutherland Sutherla | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise us more pages if needed.) idpoint between two points p1(-10,20)andp2(50,10). d and Midpoint subdivision line clipping algorithm. dpoint subdivision line clipping algorithm. | | No
mo
(N
bla
i.
ii. | te: Below given are few some such questions so as to cote: Use Point VIII to X and the pages provided or attach Calculate coordinates of magnetic Compare Cohen Sutherland Write disadvantages of Microscopic Compares of Microscopic Cohen Sutherland Sutherla | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise us a more pages if needed.) idpoint between two points p1(-10,20)andp2(50,10). d and Midpoint subdivision line clipping algorithm. | | No
mo
(N
bla
i.
ii. | te: Below given are few some such questions so as to cote: Use Point VIII to X and the pages provided or attach Calculate coordinates of magnetic Compare Cohen Sutherland Write disadvantages of Microscopic Compares of Microscopic Cohen Sutherland Sutherla | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise us more pages if needed.) idpoint between two points p1(-10,20)andp2(50,10). d and Midpoint subdivision line clipping algorithm. dpoint subdivision line clipping algorithm. | | No
mo
(N
bla
i.
ii. | te: Below given are few some such questions so as to cote: Use Point VIII to X and the pages provided or attach Calculate coordinates of magnetic Compare Cohen Sutherland Write disadvantages of Microscopic Compares of Microscopic Cohen Sutherland Sutherla | d XIII to XV for all relevant programming exercise us more pages if needed.) idpoint between two points p1(-10,20)andp2(50,10). d and Midpoint subdivision line clipping algorithm. dpoint subdivision line clipping algorithm. | | No
mo
(N
bla
i.
ii. | te: Below given are few some such questions so as to cote: Use Point VIII to X and the pages provided or attach Calculate coordinates of magnetic Compare Cohen Sutherland Write disadvantages of Microscopic Compares of Microscopic Cohen Sutherland Sutherla | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise us a more pages if needed.) idpoint between two points p1(-10,20)andp2(50,10). d and Midpoint subdivision line clipping algorithm. dpoint subdivision line clipping algorithm. | | Comput | er Graphics (22318) | |--------|---| | | | | | | | | | | | | | ••••• | | | •••••• | | | ••••• | | | | | | | | | | | | XVII. | Exercise Attempt Q1. and teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) 1. Using Midpoint subdivision line clipping algorithm illustrate a clipping of a line segment joining two end points A(-1,5),B(3,8) by considering clipping window | | | with left corner at(-3,1) and upper right corner at(2,6). | | | (Space for Answers) | | | | | | | | | | | | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | | | | | | | | | | •••••• | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | | | | | | | | *************************************** | #### XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 #### XIX. Assessment Scheme | | Performance indicators | Weightage | |----|---|-----------| | | Process related (10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | | Total (25 Marks) | 100% | | Lis | st | O. | f | 5 | ti | u | a | le | ? | ı | t | S | / | Γ | e | a | ! } | n | ı | Λ | И | ĺ | 21 | n | ı | b | e | ? / | 5 | | | |-----|----|----|---|---|----|---|---|----|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|----|---|---|---|---|-----|---|------|--| | 1. | • | | | | | | | • | | | | 2. | • | | | | | | | | | | | 3. | • | | | | | | | 4. |
 | | | - | Marks Obtained | | | | | | | | | |------------------------|------------------------|-----------|--|--|--|--|--|--|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | | | | | | | | | | | | | # Practical No.14: Program to clip polygon using sutherland hodgeman polyon clipping algorithm. #### I. Practical Significance The Sutherland-Hodgeman clipping algorithm finds the polygon that is the intersection between an arbitrary polygon (subject polygon) and a convex polygon (clip polygon). It is used in Computer graphics to reduce the complexity of a scene being displayed by eliminating parts of a polygon that do not need to be displayed. #### **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer programming technologies and tools with an understanding of the limitations. - Communication: Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV. Relevant** Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Implement various clipping algorithms using C. #### V. Practical Outcome (POs): Write a program to clip line using Sutherland Hodgeman Polygon clipping algorithm. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. #### VII. Minimum Theoretical Background Polygon Clipping: Polygon is specified by set of three or more co-ordinates positions, called vertices. These vertices are connected in sequence by straight line segment. These straight line segments are called as edges or side if the polygon. Figure shows original polygon with clipping window and polygon after clipping. #### Sutherland - Hodgeman algorithm The Sutherland - Hodgeman algorithm performs a clipping of a polygon against each window edge in turn. It accepts an ordered sequence of vertices v1, v2, v3, ..., vn and puts out a set of vertices defining the clipped polygon. Following figure represents the polygon before clipping has occurred. Before clipping The following figures shows how this algorithm works at each edge, clipping the polygon. - a. Clipping against the left side of the clip window. - b.Clipping against the top side of the clip window. - c. Clipping against the right side of the clip window. - d.Clipping against the bottom side of the clip window. #### Four test cases of edges: Every edge of polygon is compared with clipping plane to find out the new vertices called output vertices. According to this there are fur relationships between the edge and clipping boundary. Case1: If both input vertices are inside the clipping window boundary then add only second vertex to output vertex list. Case 2: If the first vertex is inside the window boundary and second vertex is outside then only intersection with window boundary is added to output vertex list. Case3: If both input vertices are outside the clipping window boundary then nothing is added to output vertex list. Case4: If the first vertex is outside the clipping window the clipping window boundary and second vertex is inside it, then both the intersection point of the polygon edge with window boundary and second vertex are added to output vertex list V: Case: 3 clipped Case: 4 ## VIII. Algorithm ## IX. Flow Chart ## X. 'C' Program Code ## XI. Resources required | Sr. | Name of |
Specification | Quantity | Remarks | | | | | |-----|------------------|------------------------------|--------------|------------------------|--|--|--|--| | No. | Resource | | | | | | | | | 1 | Hardware: | Computer (i3-i5 preferable), | | | | | | | | | Computer | RAM minimum 2 GB and | | | | | | | | | System | onwards but not limited to | As per batch | For all
Experiments | | | | | | 2 | Operating system | Windows XP/Windows | size | | | | | | | | | 7/LINUX version 5.0 or later | | Experiments | | | | | | 3 | Software | Turbo C /C++ Version 3.0 or | | | | | | | | | | later with DOSBOX | | | | | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XIII. Resources used | | Name of Resource | Specification | |-----------------------------|---|---| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | V. Re | sult (Output of the Progra | m) | | •••• | | | | . Co | onclusion (s) | | | •••• | | | | | | | | | | | | •••• | ••••• | | |
⁄I. Pr | actical Related Ouestions | | | No
mo | ore such questions so as to c | sample questions for reference. Teacher must design
ensure the achievement of identified CO. | | No
mo
(N | ote: Below given are few sore such questions so as to ote: Use Point VIII to X an | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise use | | No
ma
(N
bla
i. | te: Below given are few sore such questions so as to cote: Use Point VIII to X and ank pages provided or attach. If the first vertex is outside clipping window, then write | ensure the achievement of identified CO. d XIII to XV for all relevant programming exercise use | | No
ma
(N
bla
i. | ote: Below given are few sore such questions so as to cote: Use Point VIII to X and the pages provided or attach. If the first vertex is outside clipping window, then write Write the procedure to Clipping algorithm. | d XIII to XV for all relevant programming exercise use more pages if needed.) de the clipping window and second point is inside the te which points are added to output vertex list. | | No
ma
(N
bla
i. | ote: Below given are few sore such questions so as to cote: Use Point VIII to X and the pages provided or attach. If the first vertex is outside clipping window, then write Write the procedure to Clipping algorithm. | d XIII to XV for all relevant programming exercise use more pages if needed.) de the clipping window and second point is inside the te which points are added to output vertex list. clip polygon using Sutherland Hodgeman Polygon | | No
ma
(N
bla
i. | ote: Below given are few sore such questions so as to cote: Use Point VIII to X and the pages provided or attach. If the first vertex is outside clipping window, then write Write the procedure to Clipping algorithm. | d XIII to XV for all relevant programming exercise use a more pages if needed.) de the clipping window and second point is inside the te which points are added to output vertex list. clip polygon using Sutherland Hodgeman Polygon | | No
ma
(N
bla
i. | ote: Below given are few sore such questions so as to cote: Use Point VIII to X and the pages provided or attach. If the first vertex is outside clipping window, then write Write the procedure to Clipping algorithm. | d XIII to XV for all relevant programming exercise use a more pages if needed.) de the clipping window and second point is inside the te which points are added to output vertex list. clip polygon using Sutherland Hodgeman Polygon | | Comput | ter Graphics (22318) | | | | | | |--------|--|---------------------|---|---|---|-------| • | | | | | | | | | | | •••••• | | | | | | | | ••••• | | •••••• | ••••• | • | ••••• | ••••• | | ••••• | | •••••• | ••••• | • | ••••• | | | ••••• | | •••••• | ••••• | ••••• | ••••• | | | | | ••••• | | | | | | | | | | | • | | | | | | | | • | | | | | | | | •••• | | | | | | | | | | | | | | | | | | | •••••• | | | | | | | | ••••• | | •••••• | •••••• | ••••• | ••••• | | | ••••• | | •••••• | ••••• | ••••• | ••••• | | | ••••• | | •••••• | ••••• | | • | | | XVII. | Attempt Q1. and teacher shall al (Note: Use Point VIII to X and X blank pages provided or attach model). Clip the following polygon algorithm. | III to X
re page | V for all release if needed.) Sutherland Clip Polygon | evant programent Hodgeman | mming exe | | | | V1 | | V5 | j | | | | | | C1 | | C4 | | | | | (Spac | ce for A | answers) | Computer Graphics (22318) | |---------------------------| ## XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 ## XIX. Assessment Scheme | | Performance indicators | Weightage | |----|---|-----------| | | Process related(10 Marks) | 30% | | 1. | Debugging ability | 20% | | 2. | Follow ethical practices. | 10% | | | Product related (15 Marks) | 70% | | 3. | Correctness of algorithm | 15% | | 4. | Correctness of Program codes | 30% | | 5. | Quality of input/output messaging and output formatting | 10% | | 6. | Timely Submission of report | 5% | | 7. | Answer to sample questions | 10% | | _ | Total (25 Marks) | 100% | ## List of Students /Team Members | 1. | | |----|--| | 2. | | | 3. | | | 4. | | | - | Marks Obtain | ed | Dated signature of Teacher | |------------------------|------------------------|-----------|----------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | ### Practical No.15: Program to draw Hilbert's curve. #### I. Practical Significance Objects in real world are not always made up of regular geometric shapes they may includes curves. Drawing curves involves complex mathematical analysis in the form of various interpolation techniques. #### **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - Engineering tools: Apply relevant Computer Programming technologies and tools with an understanding of the limitations. - **Communication:** Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs in C to create curves and fractals using algorithms. #### V. Practical Outcome (POs): Write a program to draw Hilbert's curve. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. #### VII. Minimum Theoretical Background #### Hilbert curve The Hilbert curve is a space filling curve that visits every point in a square grid with a size of 2×2, 4×4, 8×8, 16×16, or any other power of 2. Hilbert curve in Image processing is used for image compression and dithering. It has advantages in those operations where the coherence between neighboring pixels is important. The Hilbert curve is also a special version of a quad tree; any image processing function that benefits from the use of quad trees may also use a Hilbert curve. The Curve can be built by following Successive approximation: Figure 1: First Approximation to Hilbert Curve Figure 2: Second Approximation to Hilbert Curve Figure 3: Third Approximation to Hilbert Curve - The first approximation will divide square into 4 quadrant and draw curve which connect the center point (Figure 1). - In second again divide each quadrant and again connects the center point (Figure 2). - In the third approximation again subdivide the quadrant. If again connects the centers of the finest level before stepping to the next level (Figure 3).
Applying the process continuously, remember following things: - 1. Curve never cross itself. - 2. The curve is arbitrarily close to the every point in the square. There is no limit to subdivisions. - 3. The curve fills the square. - 4. The length of the curve is infinite, with each subdivision length increase by a factor of 4. - 5. There is no limit of length. - 6. The constructed curve is topologically equivalent to line Dt=1. - 7. The fractal dimensions can be determined as at each subdivision the scale is changed by 2 but the length is changed by 4. - 8. For square it takes 4 curves of the half scale to build the full sized object so dimension D can be given as $4 = 2^{D}$. It must be D=2. - 9. The Hilbert curve has topological dimension 1 but fractal dimensions 2. #### **Procedure:** - 1. Hilbert subroutine draws the Hilbert curve. - 2. It takes as parameters the depth of recursion, and dx and dy values that give the direction in which it should draw. - 3. It recursively draws four smaller Hilbert curves and connects them with lines. ## VIII. Algorithm #### IX. Flow Chart ## X. 'C' Program Code ## XI. Resources required | Sr.
No. | Name of Resource | Specification | Quantity | Remarks | | | | | |------------|------------------------------|---|------------|-------------|--|--|--|--| | 1 | Hardware:
Computer System | Computer (i3-i5 preferable), RAM minimum 2 GB and | | | | | | | | | Computer System | onwards but not limited to | As per | For all | | | | | | 2 | Operating system | Windows XP/Windows 7/LINUX version 5.0 or later | batch size | Experiments | | | | | | 3 | Software | Turbo C /C++ Version 3.0 or later with DOSBOX | | | | | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety practices. ## XIII. Resources used | Γ | S. No. | Name of Resource | Specification | |-------|-----------------------|---|--| | | 1 | Computer System with broad specifications | | | | 2 | Software | | | _ | 3 | Any other resource used | | | XIV | | | m) | | XV | . Co | onclusion(s) | | | | •••• | | | | | •••• | | | | | mo
(N
bla
i. | ore such questions so as to o ote: Use Point VIII to X and ank pages provided or attach Define Curve. | cample questions for reference. Teacher must design consure the achievement of identified CO. d XIII to XV for all relevant programming exercise use more pages if needed.) etal dimension of Hilbert's curve. | | | | (\$ | Space for Answers) | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | Computer Graphics (22318) | |---| | | | | | | | XVII. Exercise Attempt Q1. and teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) | | 1. Draw following Hilbert's curve. | | | | (Space for Answers) | ## XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 ## XIX. Assessment Scheme | | Performance indicators | Weightage | | | | | | |----|---|-----------|--|--|--|--|--| | | Process related(10 Marks) | 30% | | | | | | | 1. | Debugging ability | 20% | | | | | | | 2. | Follow ethical practices. | 10% | | | | | | | | Product related (15 Marks) | 70% | | | | | | | 3. | Correctness of algorithm | 15% | | | | | | | 4. | Correctness of Program codes | 30% | | | | | | | 5. | Quality of input/output messaging and output formatting | 10% | | | | | | | 6. | Timely Submission of report | 5% | | | | | | | 7. | Answer to sample questions | 10% | | | | | | | | Total (25 Marks) 100% | | | | | | | | List | of | Stud | lents | /Team | Members | | |------|----|------|-------|-------|---------|--| | | | | | | | | | 1. | |
 | · • • | ٠. | |
 | ٠. | | | | | • | • |
 | • | |----|-----|------|-------|----|------|------|----|--|--|--|--|---|---|------|---| | 2. | ••• |
 | · • • | |
 |
 | | | | | | | |
 | • | | 3. | |
 | | |
 |
 | | | | | | | • |
 | | | 4 | | | | | |
 | | | | | | | | | | | | Marks Obtain | ed | Dated signature
of Teacher | |------------------------|------------------------|-----------|-------------------------------| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | ## Practical No.16: Program to draw Koch Curve and Bezier Curve. #### I. Practical Significance Objects in real world are not always made up of regular geometric shapes they may includes curves. Drawing curves involves complex mathematical analysis in the form of various interpolation techniques. #### **II.** Relevant Program Outcomes (POs): - **Basic knowledge:** Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Computer Engineering related problems. - **Discipline knowledge:** Apply Computer Programming knowledge to solve broad-based Computer Engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Computer Engineering related problems. - **Engineering tools:** Apply relevant Computer Programming technologies and tools with an understanding of the limitations. - Communication: Communicate effectively in oral and written form. #### III. Competency and Practical skills This practical is expect to develop the following skills in you #### Develop 'C' programs to draw basic graphics objects: - 1. Write syntax for graphics functions. - 2. Write and Save a simple C program. - 3. Setup graphics drivers, graphics mode and directory to run graphics program. - 4. Compile the C program using Turbo C. - 5. Debug and execute the program. #### **IV.** Relevant Course Outcome(s): - Implement standard algorithms to draw various graphics objects using C program. - Develop programs in C to create curves and fractals using algorithms. #### V. Practical Outcome (POs): Write a program to draw Koch curve and Bezier curve. #### VI. Relevant Affective domain related Outcome(s) - a. Handle command prompt environment. - b. Experiment with graphics environment. - c. Follow safety/ethical practices. #### VII. Minimum Theoretical Background #### **Koch Curve** Koch curve begin with a straight line (the blue segment in the top figure). Divide it into three equal segments and replace the middle segment by the two sides of an equilateral triangle of the same length as the segment being removed (the two red segments in the middle figure). Now repeat, taking each of the four resulting segments, dividing them into three equal parts and replacing each of the middle segments by two sides of an equilateral triangle (the red segments in the bottom figure). Continue this construction. Suppose repeating the replacements indefinitely, since each repetition increase the length by factor of 4/3, the length of the curve will be infinite but it is folded in a lots of tiny wiggles'. Its topological dimension is 1, Its fractal dimension is, 4=3^D. Solving this fractal dimension gives, $$D = log_3 4 / log_3 = 1.2618$$ #### **Bezier Curves** Bezier Curve is adequate for most graphical applications. This curve requires four control points. These four control points completely specify the curve. Additional points cannot be added. We cannot extend Bezier curve but we can take four more points and we can construct a second Bezier curve which can be attached to second Bezier curve. #### **Procedure:** #### Koch curve: The Koch curve is a simple fractal that creates a pretty snowflake-like object. The iteration algorithm is very simple: 1. Start with a straight line: _____ 2. Trisect the line into three segments: 3. Form an equilateral triangle rising out of the middle segment: 4. Repeat, with newly formed segment. If you start with an equilateral triangle instead of a line, you get the lovely image shown at the top of the article after a few iterations. #### **Bezier Curve:** To each set of four points P_0 , P_1 , P_2 , P_3 we associate a curve with the following properties: - 1. It starts at P_0 and ends at P_3 . - 2. When it starts from P_0 it heads directly towards P_1 , and when it arrives at P_3 it is coming from the direction of P_2 . - 3. The entire curve is contained in the quadrilateral whose corners are the four given points (their **convex hull**). #### VIII. Algorithm IX. Flow Chart X. 'C' Program Code ## XI. Resources required | Sr. | Name of | Specification | Quantity | Remarks | |-----|------------------|------------------------------|--------------|-------------| | No. | Resource | | | | | 1 | Hardware: | Computer (i3-i5 preferable), | | | | | Computer | RAM minimum 2 GB and | | | | | System | onwards but not limited to | As per batch | For all | | 2 | Operating system | Windows XP/Windows |
size | Experiments | | | | 7/LINUX version 5.0 or later | | Experiments | | 3 | Software | Turbo C /C++ Version 3.0 or | | | | | | later with DOSBOX | | | #### XII. Precautions - 1. Ensure that all C statements must end with a semicolon (;). - 2. Use white spaces in c to describe blanks and tabs. - 3. Ensure use of proper graphics function for relevant object. - 4. Follow safety/ethical practices. #### XIII. Resources used | S. No. | Name of Resource | Specification | |--------|---|---------------| | 1 | Computer System with broad specifications | | | 2 | Software | | | 3 | Any other resource used | | | XIV. | Result (Output of the Program) | |------|--------------------------------| | | | | | | | | | | XV. | Conclusion(s) | | | | | | | #### **XVI.** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) - i. Define fractal. - ii. Define fractal dimension and topological dimension. | (Space for Answers) | |---------------------| #### XVII. Exercise ## Attempt Q1. and teacher shall allot Q. 2/Q.3 from the following: (Note: Use Point VIII to X and XIII to XV for all relevant programming exercise use blank pages provided or attach more pages if needed.) 1. Draw following Bezier curve. 2. Draw following Koch curve. | (Space for Answers) | |---------------------| #### XVIII. References / Suggestions for further Reading - 1. https://books.google.co.in/books?isbn=8184317379 - 2.http://www.freebookcentre.net/ComputerScience-Books-Download/Basics-of-Computer-Graphics.html - 3. http://www.freetechbooks.com/introduction-to-computer-graphics-t892.html - 4. https://en.wikipedia.org/wiki/Book:Game_Devel_Book_2 #### XIX. Assessment Scheme | | Performance indicators | Weightage | | | | | | |----|---|-----------|--|--|--|--|--| | | Process related(10 Marks) | 30% | | | | | | | 1. | Debugging ability | 20% | | | | | | | 2. | Follow ethical practices. | 10% | | | | | | | | Product related (15 Marks) | 70% | | | | | | | 3. | Correctness of algorithm | 15% | | | | | | | 4. | Correctness of Program codes | 30% | | | | | | | 5. | Quality of input/output messaging and output formatting | 10% | | | | | | | 6. | Timely Submission of report | 5% | | | | | | | 7. | Answer to sample questions | 10% | | | | | | | | Total (25 Marks) 100% | | | | | | | | 1. |
. |
 | ٠. | | | | | | | | | • |
 | | |----|---------------|------|----|------|--|--|--|--|--|--|--|---|------|-------| | 2. |
. |
 | | | | | | | | | | • |
 |
• | | 3. |
 |
 | |
 | | | | | | | | |
 | | 4. List of Students /Team Members | | Dated signature
of Teacher | | | |------------------------|-------------------------------|-----------|--| | Process
Related(10) | Product
Related(15) | Total(25) | | | | | | | | Fina | · · | lanual | s Developed by MSBTE | | |----------|---|----------------|---|----------------| | Firs | t Semester: | | | | | 1 | Fundamentals of ICT | 22001 | 16 Digital Communication Systems | 22428 | | 2 | English | 22101 | 17 Mechanical Engineering Measurments | 22443 | | 3 | English Work Book | 22101 | 18 Fluid Mechanics and Machinery | 22445 | | 4 | Basic Science (Chemistry) | 22102 | 19 Fundamentals Of Mechatronics | 22048 | | 5 | Basic Science (Physics) | 22102 | FifthSemester: | | | Sec | ond Semester: | | | | | | | | Design of Steel and RCC Structures | 22502 | | 1 | Bussiness Communication Using Computers | 22009 | 2 Public Health Engineering | 22504 | | 2 | Computer Peripherals & Hardware Maintenace | 22013 | 3 Heat Transfer Operation | 22510 | | 3 | Web Page Design with HTML | 22014 | 4 Environmental Technology | 22511 | | 4 | Applied Science (Chemistry) | 22202 | 5 Operating Systems | 22516 | | 5 | Applied Science (Physics) | 22202 | 6 Advanced Java Programming | 22517 | | 6 | Applied Machines | 22203 | 7 Software Testing | 22518 | | 7 | Basic Surveying | 22205 | 8 Control Systems and PLC's | 22531 | | 8 | Applied Science (Chemistry) | 22211 | 9 Embedded Systems | 22532 | | 9 | Applied Science (Physics) | 22211 | 10 Mobile and Wireless Communication | 22533 | | 10 | Fundamental of Electrical Engineering | 22212 | 11 Industrial Machines | 22523 | | 11 | Elements of Electronics | 22213 | 12 Switchgear and Protection | 22524 | | 12 | Elements of Electrical Engineering | 22215 | 13 Energy Conservation and Audit | 22525 | | 13 | Basic Electronics | 22216 | 14 Power Engineering and Refrigeration | 22562 | | 14 | 'C' programming Language | 22218 | 15 Solid Modeling and Additive Manufacturing | 22053 | | 15 | Basic Electronics | 22225 | 16 Guidelines & Assessment Manual for | 22057 | | 16 | Programming in "C" | 22226 | Micro Projects & Industrial Training | | | 17 | Fundamentals of Chemical Engineering | 22231 | Sixth Semester: | | | Thi | rd Semester: | | 1 Colid Modeling | 17000 | | | | | 1 Solid Modeling
2 Highway Engineering | 17063
17602 | | 1 | Applied Multimedia Techniques | 22024 | 3 Contracts & Accounts | 17602 | | 2 | Advanced Serveying | 22301 | 4 Design of R.C.C. Structures | 17603 | | 3 | Highway Engineering | 22302 | 5 Industrial Fluid Power | 17604 | | 4 | Mechanics of Structures | 22303 | 6 Design of Machine Elements | 17610 | | 5 | Building Construction | 22304 | 7 Automotive Electrical and Electronic Systems | 17617 | | 6 | Concrete Technology | 22305 | 8 Vehicle Systems Maintenance | 17618 | | 7 | Strength Of Materials | 22306 | 9 Software Testing | 17624 | | 8 | Automobile Engines | 22308 | 10 Advanced Java Programming | 17625 | | 9 | Automobile Transmission System | 22309 | 11 Mobile Computing | 17632 | | 10 | Mechanical Operations | 22313 | 12 System Programing | 17634 | | 11 | Technology Of Inorganic Chemicals | 22314 | 13 Testing & Maintenance of Electrical Equipments | 17637 | | 12 | Object Oriented Programming Using C++ | 22316 | 14 Power Electronics | 17638 | | 13 | Data Structure Using 'C' | 22317 | 15 Illumination Engineering 16 Power System Operation & Control | 17639
17643 | | 14 | Computer Graphics | 22318 | 16 Power System Operation & Control 17 Environmental Technology | 17646 | | 15 | Database Management System | 22319 | 18 Mass Transfer Operation | 17648 | | 16 | Digital Techniques | 22320 | 19 Advanced Communication System | 17656 | | 17 | Principles Of Database | 22321 | 20 Mobile Communication | 17657 | | 18 | Digital Techniques & Microprocessor | 22323 | 21 Embedded System | 17658 | | 19 | Electrical Circuits | 22324 | 22 Process Control System | 17663 | | 20 | Electrical & Electronic Measurment | 22325 | 23 Industrial Automation | 17664 | | 21 | Fundamental Of Power Electronics | 22326 | 24 Industrial Drives | 17667 | | 22 | Electrical Materials & Wiring Practice | 22328 | 25 Video Engineering | 17668 | | 23 | Applied Electronics | 22329 | 26 Optical Fiber & Mobile Communication | 17669 | | 24 | Electrical Circuits & Networks | 22330 | 27 Therapeutic Equipment 28 Intensive Care Equipment | 17671 | | 25 | Electronic Measurments & Instrumentation | 22333 | 28 Intensive Care Equipment
29 Medical Imaging Equipment | 17672
17673 | | 26 | Principles Of Electronics Communication | 22334 | 20 Modiodi inaging Equipment | 17070 | | 27 | Thermal Engineering | 22337 | Pharmacy Lab Manual | | | 28 | Engineering Matrology | 22342 | • | | | 29
30 | Mechanical Engineering Materials | 22343
22344 | <u>FirstYear</u> : | | | | Theory Of Machines | ZZ344 | 1 Pharmaceutics - I | 0805 | | Fou | rth Semester: | | 2 Pharmaceutical Chemistry - I | 0806 | | _ | I budan dian | 00404 | 3 Pharmacognosy | 0807 | | 1 | Hydraulics | 22401 | 4 Biochemistry and Clinical Pathology | 0808 | | 2 | Geo Technical Engineering | 22404 | 5 Human Anatomy and Physiology | 0809 | | 3 | Chemical Process Instrumentation & Control | 22407 | Second Vear | | | 4 | Fluid Flow Operation | 22409 | Second Year: | | | 5 | Technology Of Organic Chemicals | 22410 | 1 Pharmaceutics - II | 0811 | | 6 | Java Programming | 22412 | Pharmaceutical Chemistry - II | 0812 | | 7 | GUI Application Development Using VB.net | 22034 | 3 Pharmacology & Toxicology | 0813 | | 8 | Microprocessor | 22415 | 4 Hospital and Clinical Pharmacy | 0816 | | 9 | Database Managment | 22416
22418 | • | | | 10 | Electric Motors And Transformers | 22410 | | | | 11 | Industrial Measurements Digital Floctronics And Microcontroller Applications | 22420
22421 | | | | 12 | Digital Electronics And Microcontroller Applications | 22421 | | | | 13 | Linear Integrated Circuits Microcontroller & Applications | 22423
22426 | | | | 14 | Microcontroller & Applications Basic Power Electronics | 22426 | | | | 15 | Dagio I Owei Liecti OHICS | 22421 | | | | | | | | | ## **HEAD OFFICE** Secretary, Maharashtra State Board of Technical Education 49, Kherwadi, Bandra (East), Mumbai - 400 051 Maharashtra (INDIA) Tel: (022)26471255 (5 -lines) Fax: 022 - 26473980 Email: -secretary@msbte.com Web -www.msbte.org.in ## **REGIONAL OFFICES:** #### **MUMBAI** Deputy Secretary (T), Mumbai Sub-region, 2nd Floor, Govt. Polytechnic Building, 49, Kherwadi, Bandra (East) Mumbai - 400 051 Phone: 022-26473253 / 54 Fax: 022-26478795 Email: rbtemumbai@msbte.com #### **NAGPUR** Deputy Secretary (T), M.S. Board of Technical Education Regional Office, Mangalwari Bazar, Sadar, Nagpur - 440 001 Phone: 0712-2564836 / 2562223 Fax: 0712-2560350 Email:
rbteng@msbte.com #### **PUNE** Deputy Secretary (T), M.S. Board of Technical Education, Regional Office, 412-E, Bahirat Patil Chowk, Shivaji Nagar, Pune Phone: 020-25656994 / 25660319 Fax: 020-25656994 Email: rbtepn@msbte.com #### **AURANGABAD** Deputy Secretary (T), M.S. Board of Technical Education, Regional Office, Osmanpura, Aurangabad -431 001. Phone: 0240-2334025 / 2331273 Fax: 0240-2349669 Email: rbteau@msbte.com