| Name | | | |--------------|---------|----| | Roll No | Year 20 | 20 | | Exam Seat No | | | **ELECTRONICS GROUP | SEMESTER - IV | DIPLOMA IN ENGINEERING AND TECHNOLOGY** # A LABORATORY MANUAL FOR MICROCONTROLLER AND APPLICATIONS (22426) MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI (Autonomous) (ISO 9001 : 2015) (ISO / IEC 27001 : 2013) #### **VISION** To ensure that the Diploma level Technical Education constantly matches the latest requirements of technology and industry and includes the all-round personal development of students including social concerns and to become globally competitive, technology led organization. #### MISSION To provide high quality technical and managerial manpower, information and consultancy services to the industry and community to enable the industry and community to face the changing technological and environmental challenges. #### **QUALITY POLICY** We, at MSBTE are committed to offer the best in class academic services to the students and institutes to enhance the delight of industry and society. This will be achieved through continual improvement in management practices adopted in the process of curriculum design, development, implementation, evaluation and monitoring system along with adequate faculty development programmes. #### **CORE VALUES** MSBTE believes in the followings: - Education industry produces live products. - Market requirements do not wait for curriculum changes. - Question paper is the reflector of academic standards of educational organization. - Well designed curriculum needs effective implementation too. - Competency based curriculum is the backbone of need based program. - Technical skills do need support of life skills. - Best teachers are the national assets. - Effective teaching learning process is impossible without learning resources. # A Laboratory Manual for # Microcontroller and Applications (22426) **Semester-IV** (EJ, DE, ET, EN, EX, EQ, IE, IS, IC) # Maharashtra State Board of Technical Education, Mumbai (Autonomous) (ISO 9001:2015) (ISO/IEC 27001:2013) # Maharashtra State Board of Technical Education Certificate | This is to certify that M | Mr. / Ms | | |---------------------------|--------------------------|---------------------| | Roll No | of Se | mester of Diploma | | in | | of Institute | | | (Cod | de | | has attained pre-defin | ned practical outcomes(P | ROs) satisfactorily | | in course Microconti | roller and Applications | (22426) for the | | academic year 20 | to 20 as prescribed | in the curriculum. | | | | | | Place | Enrollment No. | | | Date: | Exam Seat No. | | | | | | | Course Teacher | Head of the Department | Principal | | | Seal of the Institute | | #### **Preface** The primary focus of any engineering laboratory/ field work in the technical education system is to develop the much needed industry relevant competencies and skills. With this in view, MSBTE embarked on this innovative 'I' Scheme curricula for engineering diploma programmes with outcome-base education as the focus and accordingly, relatively large amount of time is allotted for the practical work. This displays the great importance of laboratory work making each teacher; instructor and student to realize that every minute of the laboratory time need to be effectively utilized to develop these outcomes, rather than doing other mundane activities. Therefore, for the successful implementation of this outcome-based curriculum, every practical has been designed to serve as a 'vehicle' to develop this industry identified competency in every student. The practical skills are difficult to develop through 'chalk and duster' activity in the classroom situation. Accordingly, the 'I' scheme laboratory manual development team designed the practicals to focus on the outcomes, rather than the traditional age old practice of conducting practicals to 'verify the theory' (which may become a byproduct along the way). This laboratory manual is designed to help all stakeholders, especially the students, teachers and instructors to develop in the student the pre-determined outcomes. It is expected from each student that at least a day in advance, they have to thoroughly read through the concerned practical procedure that they will do the next day and understand the minimum theoretical background associated with the practical. Every practical in this manual begins by identifying the competency, industry relevant skills, course outcomes and practical outcomes which serve as a key focal point for doing the practical. The students will then become aware about the skills they will achieve through procedure shown there and necessary precautions to be taken, which will help them to apply in solving real-world problems in their professional life. This manual also provides guidelines to teachers and instructors to effectively facilitate student-centered lab activities through each practical exercise by arranging and managing necessary resources in order that the students follow the procedures and precautions systematically ensuring the achievement of outcomes in the students. Microcontroller is used in almost all the domestic, industrial, consumer goods and other high end products. Automation is used in every field of engineering and microcontroller is inbuilt element of these systems and devices. Diploma engineers have to deal with various microcontroller based systems and maintain them. This course is intended to develop the skills to maintain and solve the application problems related to microcontrollers. Although all care has been taken to check for mistakes in this laboratory manual, yet it is impossible to claim perfection especially as this is the first edition. Any such errors and suggestions for improvement can be brought to our notice and are highly welcome. ### Programme Outcomes (POs) to be achieved through Practical of this Course Following programme outcomes are expected to be achieved through the practical of the course - PO1. Basic knowledge: Apply knowledge of basic mathematics, sciences and basic engineering to solve the broad-based Electronics and Telecommunication engineering problems. - PO2. Discipline knowledge: Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - PO3. Experiments and practice: Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - PO4. Engineering tools: Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations - PO5. The engineer and society: Assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to practice in field of Electronics and Telecommunication engineering. - PO6. Environment and sustainability: Apply Electronics and Telecommunication engineering solutions also for sustainable development practices in societal and environmental contexts. - PO7. Ethics: Apply ethical principles for commitment to professional ethics, responsibilities and norms of the practice also in the field of Electronics and Telecommunication engineering. - PO8. Individual and team work: Function effectively as a leader and team member in diverse/ multidisciplinary teams. - PO9. **Communication:** Communicate effectively in oral and written form. - PO10. Life-long learning: Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry. Program Specific Outcomes (PSO):-. - **PSO1. Electronics and Telecommunication Systems:** Maintain various types of Electronics and Telecommunication systems. - **PSO2. EDA** Tools Usage: Use EDA tools to develop simple Electronics Telecommunication engineering related circuits. #### **List of Industry Relevant Skills** - The following industry relevant skills of the competency 'Maintain microcontroller based systems' are expected to be developed in students by undertaking the practicals of this laboratory manual. - 1. Identify the relevant microcontroller. - 2. Interface various I/O devices with microcontroller. - 3. Interpret the program. - 4. Maintain microcontroller based systems. - 5. Use features available with given microcontroller. - 6. Test the circuit for the given application. - 7. Find faults and trouble shoot the given system. #### **Practical- Course Outcome matrix** #### **Course Outcomes (COs)** - a. Analyze architecture of microcontroller ICs. - b. Interpret the program for 8051in assembly language for the given operations. - c. Interpret the program by using timer, interrupt and serial ports /parallel ports. - d. Interface the memory and I/O devices to 8051 microcontroller. - e. Maintain microcontroller used in different application | Pro. | | CO | CO | CO | CO | CO | |------|--|----|----|-----------|-----------|----| | No. | Practical Outcomes (PrO) | a. | b. | c. | d. | e. | | 1. | Identify various blocks of 8051 microcontroller development board. | V | - | - | - | - | | 2. | Write sample assembly language program using various addressing modes and assembler directives. | - | √ | 1 | i | ı | | 3. | Write an assembly language program (ALP) to perform arithmetic operations: addition, subtraction, multiplication and division. | - | √ | - | - | - | | 4. | Write an ALP to transfer data from source to destination location of internal/external data memory. | - | V | - | - | - | | 5. | Write an ALP to find smallest/largest number from the given data bytes stored in internal/external data memory locations. | - | V | - | - | - | | 6. | Write an ALP for arranging numbers in ascending /descending order stored in external memory locations. | - | V | - | - | - | | 7. | Write
an ALP to generate delay using register. | - | - | $\sqrt{}$ | - | - | | 8. | Write an ALP to transfer 8 bit data serially on serial port. | - | - | V | - | - | | 9. | Interface LED with microcontroller and turn it ON with microcontroller interrupt. | - | - | √ | - | - | | 10. | Develop an ALP to generate pulse and square wave by using Timer delay. | - | - | V | - | - | | 11. | Interface 4 X 4 LED matrix with 8051 to display various pattern. | - | - | - | √ | - | | 12. | Interface 7-segment display to display the decimal number from 0 to 9. | - | - | - | √ | - | | 13. | Interface relay with microcontroller and turn it ON and OFF. | - | - | - | √ | - | | 14. | | - | - | - | √ | - | | 15. | Interface the given keyboard with 8051 and display the key pressed. | - | - | | $\sqrt{}$ | - | | 16. | Interface ADC with 8051 microcontroller and verify input/output. | - | - | - | - | √ | | Pro.
No. | Practical Outcomes (PrO) | CO
a. | CO
b. | CO
c. | CO
d. | CO
e. | |-------------|---|----------|----------|----------|----------|----------| | 17 | Interface DAC with 8051 microcontroller and observe following waveforms: square wave, triangular wave, saw-tooth wave . | - | - | - | - | √ | | 18 | Interface stepper motor to microcontroller and rotate in clockwise and anti-clockwise direction at the given angles. | - | - | - | - | √ | #### **Guidelines to Teachers** - 1. Teacher is expected to refer complete curriculum document and follow guidelines for implementation - 2. Teacher should provide the guideline with demonstration of practical to the students with all features. - 3. Teacher shall explain prior concepts to the students before starting of each practical - 4. Involve students in performance of each practical. - 5. Teacher should ensure that the respective skills and competencies are developed in the students after the completion of the practical exercise. - 6. Teachers should give opportunity to students for hands on experience after the demonstration. - 7. Teacher is expected to share the skills and competencies to be developed in the students. - 8. Teacher may provide additional knowledge and skills to the students even though not covered in the manual but are expected the students by the industry. - 9. Give practical assignment and assess the performance of students based on task assigned to check whether it is as per the instructions. - 10. Assess the skill achievement of the students and COs of each unit. - 11. At the beginning Teacher should make the students acquainted with any of the simulation software environment as few experiments are based on simulation. - 12. It is desirable to paste the photo of actual experimental setup or draw block diagram of experimental setup. - 13. Practical No.1 should not be consider for Practical (ESE-End Semester Exam). #### **Instructions for Students** - 1. Listen carefully the lecture given by teacher about course, curriculum, learning structure, skills to be developed. - 2. Before performing the practical student shall read lab manual of related practical to be conducted. - 3. For incidental writing on the day of each practical session every student should maintain a *dated log book* for the whole semester, apart from this laboratory manual which s/he has to *submit for assessment to the teacher*. - 4. Organize the work in the group and make record of all observations. - 5. Students shall develop maintenance skill as expected by industries. - 6. Student shall attempt to develop related hand-on skills and gain confidence. - 7. Student shall develop the habits of evolving more ideas, innovations, skills etc. those included in scope of manual - 8. Student shall refer technical magazines, IS codes and data books. - 9. Student should develop habit to submit the practical on date and time. - 10. Student should well prepare while submitting write-up of exercise. #### **Content Page** #### List of Practicals and Progressive Assessment Sheet | Sr
No | Title of the practical | Page
No. | Date of perfor mance | Date of
submiss
ion | Assessmen
marks(25) | Dated
sign. of
teacher | Remar
ks (if
any) | |----------|--|-------------|----------------------|---------------------------|------------------------|------------------------------|-------------------------| | 1* | Identify various blocks of 8051 microcontroller development board. | | | | | | | | 2 | Write sample assembly language program using various addressing modes and assembler directives. | | | | | | | | 3 | Write an assembly language program (ALP) to perform arithmetic operations: addition, subtraction, multiplication and division. | | | | | | | | 4* | Write an ALP to transfer data from source to destination location of internal/external data memory. | | | | | | | | 5 | Write an ALP to find smallest/largest number from the given data bytes stored in internal/external data memory locations. | | | | | | | | 6 | Write an ALP for arranging numbers in ascending /descending order stored in external memory locations. | | | | | | | | 7* | Write an ALP to generate delay using register. | | | | | | | | 8 | Write an ALP to transfer 8 bit data serially on serial port. | | | | | | | | 9 | Interface LED with microcontroller and turn it ON with microcontroller interrupt. | | | | | | | | 10* | Develop an ALP to generate pulse and square wave by using Timer delay. | | | | | | | | 11* | Interface 4 X 4 LED matrix with 8051 to display various pattern. | | | | | | | | 12 | Interface 7-segment display to display the decimal number from 0 to 9. | | | | | | | | 13* | Interface relay with microcontroller and turn it ON and OFF. | | | | | | | | 14* | Interface LCD with 8051 microcontroller to display the alphabets and decimal numbers. | | | | |-----|--|--|--|--| | 15 | Interface the given keyboard with 8051and display the key pressed. | | | | | 16* | Interface ADC with 8051 microcontroller and verify input/output. | | | | | 17* | Interface DAC with 8051 microcontroller and observe following waveforms: square wave, triangular wave, saw-tooth wave. | | | | | 18* | Interface stepper motor to microcontroller and rotate in clockwise and anti-clockwise direction at the given angles. | | | | | | Total Marks | | | | - The practical marked as '*' are compulsory, - Column 6th marks to be transferred to Performa of CIAAN-2017. ## Practical No.1: Identify various blocks of 8051 microcontroller development board. #### I Practical Significance Microcontroller has wide application in electronic system needing real time processing/control, starting from domestic application such as washing machine, TV and air conditioners. Microcontrollers are also used in automobiles, process control industries, cell phones, robotics and in space application. This practical will help the students to develop skills to Identify various blocks of 8051 development board. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. - **Individual and team work:** Function effectively as leader and team member in diverse/multidisciplinary teams. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry. #### III Competency and Practical skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller-based systems': - Identify the components on microcontroller development board and understand their functions. - Use integrate development environment (IDE). #### IV Relevant Course Outcome(s) • Analyze architecture of microcontroller ICs #### V Practical Outcome • Identify various blocks of 8051 microcontroller development board. #### VI Relevant Affective domain related Outcome(s) - Demonstrate working as a leader/a team member. - Maintain tools and equipment. - Follow ethical practices. #### VII Minimum Theoretical Background Microcontroller is a single chip microcomputer made through VLSI fabrication. 8051 is the microcontroller of the MCS-51 family introduced by Intel Corporation. It has inbuilt components such as CPU, internal RAM and ROM, timers/counters, serial ports, interrupts and I/O ports. Fig 1.1 Block diagram of 8051 Fig 1.2 System On Chip - 8051 #### Specification of microcontroller 8051 - It is an 8-bit microcontroller. - It has 128 bytes of Internal RAM. - It has 4kilo bytes of Internal ROM. - It has two 16 bit internal timers/counters. - It has 4 eight-bit parallel ports. - Programmable full duplex serial channel. - It has three internal and two external interrupts. P1.0 [40 Vcc P1.1 [39 P0.0 (AD0) P1.2 3 38 P0.1 (AD1) P1.3 [37 P0.2 (AD2) 8051 P1.4 5 36 P0.3 (AD3) P1.5 [35 P0.4 (AD4) P1.6 [34 P0.5 (AD5) P1.7 33 P0.6 (AD6) RST [9 32 P0.7 (AD7) (RXD) P3.0 10 31 **EA/VPP** (TXD) P3.1 11 30 ALE/PROG (INTO) P3.2 [12 29 **PSEN** (INT1) P3.3 13 28 P2.7 (A15) (T0) P3.4 14 27 P2.6 (A14) (T1) P3.5 15 26 P2.5 (A13) (WR) P3.6 16 25 P2.4 (A12) (RD) P3.7 17 24 P2.3 (A11) XTAL2 18 23 P2.2 (A10) XTAL1 19 22 P2.1 (A9) GND -20 21 P2.0 (A8) Pin diagram of 8051: 8051 is a 40 pin IC and operates on +5 volts DC supply. Fig. 1.3 Pin diagram of 8051 #### **Keil IDE:** Keil is 8051 development tool which includes a text Editor, Assembler Debugger, linker, Simulator, C-complier, hex
converter, locator and some in-built features like logic analyzer to observe various waveforms. It also includes terminal emulator. Keil supports all 8051 derivatives and valuable tool for embedded software development. #### The Development board: Fig. 1.4 8051 Development Board The development board has the 89S51 microcontroller along with some necessary component like MAX 232, resistor network etc. It is a devise used to develop and design a prototype embedded system. Port pins are taken out for interfacing various peripherals. It has a provision to download the hex file of user program which is generated by Keil or any other IDE. FLASH MAGIC software is used to download the hex file into the code memory of microcontroller. Fig. 1.5 8051 Programming through serial cable #### VIII Resources required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|---|----------| | 1. | Microcontroller
kit | Single board system with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2. | Desktop PC | Loaded with open source IDE, simulation and program downloading software. | 1 No. | #### IX Precautions to be Followed Do not power up development board when identifying blocks. #### X Procedure #### Steps for creating a project using Keil software: 1. Start Keil by double clicking on Keil icon. (Keil automatically opens the last project which was opened previously, when Keil was closed). To create new project, Click on Project and select new project. Select appropriate location for new project and type project name, click on save button. "Select device for Target Target-1" window will open. It displays a list of manufacturers of microcontrollers. Double click on ATMEL or INTEL, list of supported microcontrollers gets displayed. Select 80C51AH from INTEL or AT89C51 (or as per the target board) for ATMEL then click ok. Click file pull down menu. Select new, a text editor window will open. Save this file in a same folder where project was stored. Give extension as .ASM or. A51. On left hand project work space window will display Target1 and Source group1. Right click on source group; Add files to source group 1. Select file type as asm source file. Now all .asm file Name will be displayed. Select appropriate file, click ADD and close. Project work space window will display 'Target 1' and 'Source group 1' with added file name. Type assembly language program. End with END directive. Save the file periodically. Right click on source group, click on Build target or press F7. Output window will display the errors if any. If there are some errors, then remove the errors and repeat from step number 12 until no errors. #### To create a hex file, follow this procedure - a. Right click on target in project window. - b. Click on options for target 'target 1'. - c. Set target frequency 11.0592 MHz - d. Click on output tab and checkmark the option "create hex file". - e. Click ok - f. Repeat step 12 again. Observe output window. Hex file is created. This step is optional for the experiments which need only simulation method to observe the results. To start the simulation. Click on Debug pull down. Then select start/Stop debug session On start of debug session, project window will display all internal registers of 8051 and their contents. To execute the program step by step, go no clicking on "step over" button. Observe the logic levels of port pins, timers, interrupt etc, by clicking on Peripherals and select appropriate. Execute the program step by step and observe the logic levels on port pins. Observe the serial communication by clicking VIEW pull down and select serial window-1 Option. Observe the contents of internal, external and code memory contents. - a. Click on memory window button - b. Memory window will get displayed near output window with address bar. - c. Type "i: address 8-bit H" for internal memory." X: address16 bit H" for external memory for code memory type "C: address". - d. To modify the contents of memory, right click on contents of any memory location and enter new valued to be loaded in that memory location Please note that the features of Sr. no.16 to 18 are available only in debug mode. #### XI Resources used | Sr. No. | Instrument /Components | Specification | Quantity | |---------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | Precautions followed (use blank sheet provided if space not sufficient) | |---| | | | | | | | | | Sr. No. | Component | Function | |---------|-----------|----------| Microcontroller & Application (22426) | |---------------------------------------| wherocontroller & Applica | mon (22420) | | | |---------------------------|-------------|------|--| | | | | | | | | | | | | |
 | | | | |
 |
 | | #### XIX References / Suggestions for further Reading - 1. http://www.keil.com - 2. https://en.wikipedia.org/wiki/Intel_MCS-51 - 3. http://www.circuitstoday.com/getting-started-with-keil-uvision - 4. https://www.ee.iitb.ac.in/uma/~wel/wel12/.../ATMEL%2089C51.pdf #### XX Assessment Scheme | | Performance Indicators Weightage | | | | | | | | | |---|---|-----|--|--|--|--|--|--|--| | | Process related: 15 Marks | 60% | | | | | | | | | 1 | Use of IDE tools for programming | 20% | | | | | | | | | 2 | Identifying components on developer kit | 30% | | | | | | | | | 3 | Follow ethical practices. | 10% | | | | | | | | | | Product related: 10 Marks 40% | | | | | | | | | | 4 | Observations and recording | 20% | | | | | | | | | 5 | Answer to sample questions. | 15% | | | | | | | | | 6 | Timely Submission of report. | 05% | | | | | | | | | | Total (25 Marks) 100 % | | | | | | | | | #### Name of Team Members | 1. |
 |
 |
 | |
 | | |
 | | | | | • | | | | | |----|------|------|------|--|------|--|--|------|--|--|--|--|---|--|--|---|--| | 2. |
 |
 |
 | |
 | | |
 | | | | | | | | • | | | 3. |
 |
 |
 | |
 | | |
 | | | | | | | | | | | 1. |
 |
 |
 | |
 | | |
 | | | | | | | | | | | Ma | Marks Obtained | | | | | | | | | |----------------------|-------------------------|-------------------|--|--|--|--|--|--|--| | Process Related (15) | Product
Related (10) | Total (25) | | | | | | | | | | | | | | | | | | | ## Practical No. 2: Write sample assembly language program using various addressing modes and assembler directives #### I Practical Significance The addressing modes specifies the way data can be moved or copied from source to destination location thus providing various options and flexibility for data transfer. This practical will help the students to develop skills to allow the programmer to write structured program which is essential to code maintainability. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry. #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller-based systems': - Use of addressing modes and how it provides flexibility in software development. - Use of directives to instruct the assembler. - Develop assembly programs for microcontroller. #### IV Relevant Course Outcome(s) • Interpret the program for 8051 in assembly language for the given operations. #### V Practical Outcome Write sample assembly language program using various addressing modes and assembler directives. #### VI Relevant Affective domain related Outcome(s) 1. Follow ethical practices. #### VII Minimum Theoretical Background **Addressing Modes:** A microcontroller provides various methods for accessing data needed in the execution of an instruction. The various methods of accessing the data are called addressing modes. **1. Immediate addressing mode:** The data is provided in instruction itself. The data is identified by #before the numerical value Ex: MOV A, #05H (The immediate date 05h provided in instruction is moved into A register). **2. Register addressing mode:** The registers hold the data. The permitted registers are A, R7-R0 of each register bank. Ex: MOV A, R0 content of R0 register is copied into Accumulator. **3. Direct addressing mode:** The data is in the RAM memory location and this address is given as part of instruction. Ex: MOV A, 30H Content of RAM address 30H is copied into Accumulator. **4. Register Indirect addressing mode:** Here the address of memory location is indirectly provided by a register. The '@' sign indicates that the register holds the address of memory location Ex: MOV A. @R0 Copy the
content of memory location whose address is given in R0 register to register A. **5. Register specific mode:** The operand is specified by certain specific registers such as accumulator or DPTR Ex: RRA Rotate the contents of accumulator to the right **6. Indexed Addressing mode:** This addressing mode is basically used for accessing data from look up table. Here the address of memory is indexed. Ex: MOVC A, @A+DPTR. The content of A register is added with content of DPTR and the resultant is the address of memory location from where the data is copied to A register. #### **Assembler Directives:** The assembler directives are instructions to the assembler to carry out certain activity during the assembly process. The common assembler directives are: ORG indicates the beginning of the address DB used to define 8-bit data in decimal, binary, hexadecimal, ASCII formats EQU used to define a constant without occupying a memory location END indicates end of the source file #### VIII Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------|--|----------| | 1. | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | #### IX Precautions to be Followed 1. Check rules / syntax of assembly programming. #### X Procedure #### Write Program - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL or INTEL and select 80c51AH 0r AT89C51. - 5. Type the program in text editor and save as .asm or .a51. #### **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. #### Run, Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. It will display all internal registers of 8051 and their contents. - 11. Note the contents of the registers in observation table. **SAMPLE PROGRAM 1:** Write a program to move data from accumulator to memory location 30h using immediate and indirect addressing mode. #### Step 1-Algorithm - 1. Start - 2. Move the immediate data 23H into accumulator - 3. Initialize R1 with memory location 30H - 4. Move the content of the accumulator to the memory location pointer by R1. - 5. Stop Fig 2.1 Flowchart to move data from accumulator to memory location 30h | | Step 3- | Assembly | Language | Sample | Program | |--|---------|-----------------|----------|--------|---------| |--|---------|-----------------|----------|--------|---------| | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|--------------|--| | | | | ORG 0000H | | | C:0x0000 | 7423 | | MOV A, #23H | ;Move the data 23h into accumulator | | C:0x0002 | 7930 | | MOV R1, #30H | ;Move the address 30 h into register R1 | | C:0x0004 | F7 | | MOV @R1, A | ;Move the contents of accumulator in 30h memory location | | | | | END | ;Stop | Fig 2.2 : Output window #### **SAMPLE PROGRAM 2:** Write a program using ORG, DB and END directives #### Step 1-Algorithm - Start. - Use ORG directive to set memory location at 0000H. - Use data directive to write data 27h at memory location 0000H. - Initialize data pointer to memory location 0000H. - Clear contents of Accumulator. - Move into accumulator a byte of data located at address pointed by DPTR. - Initialize Data pointer to new memory location 2000H. - Move the contents of Accumulator to address pointed by DPTR. - Stop **Step 2-Flowchart** Fig 2.3 Flowchart for ORG, DB and END directives program **Step 3: Assembly Language Program** | Step 3. Assembly Language 110gram | | | | | | | | | |-----------------------------------|-------------|--------|------------------|--|--|--|--|--| | Memory
Address | Hex
Code | Label | Mnemonics | Comments | | | | | | | | | ORG 0000H | ;Use ORG directive to set
memory location at 0000H | | | | | | C:0x0000 | 27 | DATA1: | DB 27H | ;8 bit data is Hexadecimal value | | | | | | C:0x0001 | 900000 | | MOV DPTR, #0000H | ;Initialize data pointer to 0000H | | | | | | C:0x0004 | E4 | | CLR A | ; Clear Accumulator | | | | | | C:0x0005 | 93 | | MOVC A, @A+DPTR | ;Move code byte at ACC+DPTR to ACC | | | | | | C:0x0006 | 902000 | | MOV DPTR, #2000H | ;Initialize data pointer to new memory location 2000H | | | | | | C:0x0009 | F0 | | MOVX @DPTR, A | ;Move the contents of
accumulator to address pointed
by DPTR | | | | | | | | | END | ;Stop | | | | | Fig 2.4 Output window **Problem statement #1 for student:** Write a program to transfer the data 25h into register R2 of Bank 0 and register R2 of Bank 1 using immediate and register addressing mode. ## **Step 3- Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|-------|-----------|----------| **Problem statement #2 for student:** Write a program using EQU directive. | Step 1-Algorithm | Step 2-Flowchart | |------------------|------------------| ## **Step 3- Assembly Language Program** | Hex Code | Label | Mnemonics | Comments | |----------|----------|----------------|---------------------------| Hex Code | Hex Code Label | Hex Code Label Minemonics | ## XI Resources Used | S. N | No. | Instrument /Components | Specification | Quantity | |------|-----|------------------------|---------------|----------| | | 1 | | | | | XII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | | | | | | | |------|--|--|--|--|--|--|--| XIII | Precautions Followed (use blank sheet provided if space not sufficient) | rvations
r execution | n of sample | program | n 1 | After execu | ition of sar | nple progra | am 2 | |------|---------------------------------------|---|---|---|---|---|---|---------------------------|---------------------| | | Accur | nulator | | | | Accum | nulator | | | | | F | R1 | | | | DP | TR | | | | | | nemory | | | | 2000H 1 loca | • | | | | XV | Resu | ılts (Outpi | ut of the Pro | gram) | | | | | | | | | | | | | | | | | | XVI | Inte | rpretation | of Results | (Give m | neaning of | the above ob | otained resi | ults) | ••••• | | | | | | | | | | | | | | ••••• | XVII | Conc | clusions a | nd Recomm | nendatio | o n | | | | | | XVII | Conc | clusions a | nd Recomn | nendatio | o n | | | | | | | I Pra
Note
such
1. S
2. I | ctical Rel : Below g question: State significate significate (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | ated Questiniven are fers so as to enficance of the program to direct address with a location
tents of each | ions w sample sure the copy the essing m op. ach ROM OB "Eartl | de question
e achievem
ols @ use
e value 55
node, (b) 1
M location
h" | ns for reference of idention of idention addressing the into RAM register indiregister for the follow | fied CO
ng mode.
memory lo
ect addres | ocations 40 | H to 41H | | | I Pra Note such 1. S 2. I 1. 3. S | ctical Rel : Below g question: State significate signification coop, and (state the coop ORG 2 | ated Questiniven are fers so as to enficance of the program to direct addresc) with a local point of earth of the DATA1: DATA2: | ions w sample sure the ne symbol copy the essing m op. ach ROM DB "Earth B "987-0 | de question
e achievem
ols @ use
e value 55
tode, (b) 1
M location
h" | nent of identi
d in addressin
H into RAM
register indir | fied CO
ng mode.
memory lo
ect addres
wing data | ocations 40
ssing mode | H to 41H
without | | Microcontroller & Application (22426) | |---------------------------------------| Microc | ontro | ller & Application (22426) | |--------|-------------|--| | | | | | | ••••• | | | | | | | | | | | | • • • • • • | | | | | | | | | | | | ••••• | | | XIX | R | eferences / Suggestions for further reading | | | 1. | The 8051 Microcontroller and Embedded system Using Assembly and C- | | | | Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson | | | | /Prentice Hall, , 2 nd edition, Delhi,2008, ISBN 978-8177589030 | | | 2. | https://nptel.ac.in/courses/Webcourse-contents/IISc- | | | | BANG/Microprocessors%20and%20Microcontrollers/pdf/Teacher_Slides/mod2/M2L | | | | <u>2.pdf</u> | | | 3. | https://nptel.ac.in/courses/Webcourse-contents/IIT- | | | | KANPUR/microcontrollers/chap2.pdf | ## XX Assessment Scheme | | Performance Indicators | Weightage | | |---|---|-----------|--| | | Process related: 15 Marks | 60% | | | 1 | Use of IDE tools for programming | 20% | | | 2 | Coding and Debugging ability | 30% | | | 3 | Follow ethical practices. | 10% | | | | Product related: 10 Marks | 40% | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | 5 | Relevance of output of the problem definition | 15% | | | 6 | Timely Submission of report, Answer to sample questions | 05% | | | | Total (25 Marks) | 100 % | | | ΙV | ame | of | 1 | eam | M | emi | bers | |----|-----|----|---|-----|---|-----|------| |----|-----|----|---|-----|---|-----|------| | 1 | | |---|--| | 2 | | | 3 | | | 4 | | | 1 | Marks Obtained | | | | | | | |-------------------------|-------------------------|-------------------|--|--|--|--|--| | Process
Related (15) | Product
Related (10) | Total (25) | | | | | | | | | | | | | | | ## Practical No. 3: Write an assembly language program (ALP) to perform arithmetic operations: addition, subtraction, multiplication and division. ### I Practical Significance 8051 microcontroller has single instruction arithmetic operations. Applications such as BCD and ASCII conversions and checksum byte testing require arithmetic operations. This practical will help the students to develop skills to write assembly program for arithmetic operations. ### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools**: Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Develop the code for the given problem. - Debug the code and rectify the errors. - Run the code. ### **IV** Relevant Course Outcome(s) • Interpret the program for 8051 in assembly language for the given operations. ### V Practical Outcome • Write an assembly language program (ALP) to perform arithmetic operations: addition, subtraction, multiplication and division. ### VI Relevant Affective domain related Outcome(s) Follow ethical practices. ### VII Minimum Theoretical Background Accumulator is an 8 bit register and is used for all arithmetic and logic operations. To perform arithmetic operations, it is necessary that one of the two operands should be in accumulator. Register B is used for multiplication and division purpose. There are four register banks available in 8051; each register bank consists of 8 registers (R0 to R7). #### Register banks and their RAM address Bank 3 Bank 1 Bank 2 Bank 0 R7 F R7 17 R7 1F R7 R6 E R6 16 R6 1E R6 R5 D R5 15 R5 1D R5 R4 \mathbf{C} R4 R4 1C 13 1B R3 В R3 R3 R3 R2 R2 12 R2 1A R2 9 11 19 R1 R1 R1 10 R0 R0 R0 18 Fig 3.1 Register Banks 8051 uses DPTR, a 16 bit register to access the 16-bit data from external memory. It is used in MOVX, MOVC command Arithmetic operations affect flags in PSW register of 8051 ## Processor Status Word Fig 3.2 Program Status Word Register ### Basic arithmetic operations are - For addition ADD/ADDC Destination, Source For subtraction SUBB Destination, Source For multiplication MUL AB For division DIV AB ### VIII Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|---|----------| | 1 | Desktop PC | Loaded with open source IDE, simulation | 1 No. | | | | and program downloading software | | ### IX Precautions to be Followed 1. Check rules / syntax of assembly programming. ### X Procedure ### Write Program - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL and select AT89C51. - 5. Type the program in text editor and save as filename.asm extension. ### **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. ### Run, Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. - 11. Note the values of the result of various operations in the observation table. **SAMPLE PROGRAM 1**: To perform following: arithmetic operations: addition, subtraction, multiplication and division. ### Step 1-Algorithm - 1. Move value 02 H in accumulator. - 2. Add 03 H to the number stored in accumulator (02 H). - 3. Move contents of accumulator to R0 register. - 4. Clear accumulator. - 5. Move number 05 H in accumulator. - 6. Subtract value stored in accumulator (05 H) with 02 H. - 7. Move contents of accumulator to register R1. - 8. Clear accumulator and carry flag. - 9. Move 03H in accumulator, 02H in register B. - 10. Multiply the two numbers. - 11. Store product in R2 and R3. - 12. Clear accumulator. - 13. Move 95 H and 10 H in registers A and B. - 14. Divide the two numbers. - 15. Move result in R4 and R5 - 16. Stop ### **Step 2-Flow Chart** Fig 3.3 Flowchart for arithmetic operations Step 3- Assembly Language Sample Program | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|--------------|---| | | | | ORG 0000H | | | C:0x0000 | 7402 | | MOV A, #02H | ;Move the data 02h in accumulator | | C:0x0002 | 2403 | | ADD A, #03H | ;Add the contents of accumulator with 03h | | C:0x0004 | F8 | | MOV R0, A | ;Store the result in R0 register | | C:0x0005 | E4 | | CLR A | ;Clear the contents of accumulator | | C:0x0006 | C3 | | CLR C | ;Clear the carry flag | | C:0x0007 | 7405 | | MOV A, #05H | ;Move the data 05h in accumulator | | C:0x0009 | 9402 | | SUBB A, #02H | ;Subtract the contents of accumulator and 02h | | C:0x000B | F9 | | MOV R1, A | ;Store the result in R1 register | | C:0x000C | E4 | | CLR A | ;Clear the contents of accumulator | | C:0x000D | 7403 | | MOV A, #03H | ;Move the data 03h in accumulator | | C:0x000F | 75F0 | | MOV B, #04H | ;Move the data 04h in accumulator | | C:0x0011 | A4 | | MUL AB | ;Multiply the contents of A and B | | C:0x0012 | FA | | MOV R2, A | ;Store the result (LSB) in R0 | | C:0x0013 | ABF0 | | MOV R3, B | ;Store the result (MSB) in R1 | | C:0x0015 | E4 | | CLR A | ;Clear the contents of accumulator | | C:0x0016 | 7495 | | MOV A, #95H | ;Move the data 95h in accumulator | | C:0x0018 | 75F010 | | MOV B, #10H | ;Move the data 10h in accumulator | | C:0x001B | 84 | | DIV AB | ;Divide the contents of A and B | | C:0x001C | FC | | MOV R4, A | ;Store the quotient in R4 register | | C:0x001D | ADF0 | | MOV R5, B | ;Store the Remainder in R5 register | | | | | END | ;Stop | Fig 3.4 Output window **Problem statement 1 for student**: Write a program to perform series addition of ten bytes and store the lower byte of result in 30h and higher byte of result in 31h | Step 1-Algorithm | Step 2-Flowchart | |------------------|------------------| **Step 3- Assembly Language Program** | Memory | Hex | uage Progra | | Comments | |---------|------|-------------|-----------|----------| | Address | Code | Label | Mnemonics | Comments | ## XI Resources Used | S. No. | Instrument /Components |
Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | | | | •••••• | |----------------------|---|--|--| | Precautions | Followed (use blank sheet | et provided if space not suffic | eient) | Observations Sr. No. | Register used in the | se blank sheet provided if spa | Result afte | | Sr. No. | Register used in the code | Operation | Result afte | | Sr. No. | Register used in the code | Operation Addition | Result afte | | Sr. No. | Register used in the code R0 R1 | Operation Addition Subtraction | Result afte | | Sr. No. 1 2 3 | Register used in the code R0 R1 R2 | Addition Subtraction Multiplication (LSB) | Result afte | | Sr. No. 1 2 3 4 | Register used in the code R0 R1 R2 R3 | Addition Subtraction Multiplication (LSB) Multiplication (MSB) | Result afte | | Sr. No. 1 2 3 | Register used in the code R0 R1 R2 | Addition Subtraction Multiplication (LSB) | ce not sufficient) Result after execution | | Sr. No. 1 2 3 4 5 6 | Register used in the code R0 R1 R2 R3 R4 | Addition Subtraction Multiplication (LSB) Multiplication (MSB) Division (Quotient) | Result afte | | Sr. No. 1 2 3 4 5 6 | Register used in the code R0 R1 R2 R3 R4 R5 | Addition Subtraction Multiplication (LSB) Multiplication (MSB) Division (Quotient) | Result afte | | XXI | Conclusions and Recommendation | | | | | | | | |-------|---|--|--|--|--|--|--|--| XXII | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO 1. If CY=1, A=95H, and B=4FH prior to the execution of "SUBB A, B", what will be the contents of A after the subtraction? 2. Is this a valid 8051 instruction? "DIV A, R1". Explain your answer. 3. Write the status of the CY, AC and P flag after the addition of 9CH and 64H in the following instructions. MOV A, #9CH ADD A, #64H [Space for Answers] | | | | | | | | | | | | | | | | | | | ••••• | Microcontroller & Application (22426) | |---------------------------------------| ### XIX References / Suggestions for further reading - 1. http://what-when-how.com/8051-microcontroller/arithmetic-instructions/ - 2. https://www.youtube.com/watch?v=nLsN7_6FsPs - 3. https://www.pantechsolutions.net/...tutorials/subtraction-of-two-numbers-using-8051 - 4. https://www.youtube.com/watch?v=nLsN7_6FsPs ### XX Assessment Scheme | | Performance Indicators | | | | | | |---|---|-------|--|--|--|--| | | Process related: 15 Marks | | | | | | | 1 | 1 Use of IDE tools for programming | | | | | | | 2 | Coding and Debugging ability | 30% | | | | | | 3 | Follow ethical practices. | 10% | | | | | | | Product related: 10 Marks | | | | | | | 4 | 4 Correctness of algorithm/ Flow chart | | | | | | | 5 | 5 Relevance of output of the problem definition | | | | | | | 6 | 6 Timely Submission of report, Answer to sample questions | | | | | | | | Total (25 Marks) | 100 % | | | | | | Na | Name of Team Members | | | | | | | | | | | | |----|----------------------|--|--|--|--|--|--|--|----|------|------|--| | 1 | | | | | | | | | |
 |
 | | | 2 | | | | | | | | | |
 |
 | | | 3 | | | | | | | | | ٠. |
 |
 | | | 4 | | | | | | | | | |
 |
 | | | | Marks Obtained | Dated signature of Teacher | | |----------------------------|----------------------|----------------------------|--| | Process
Related
(15) | Product Related (10) | Total (25) | | | | | | | ## Practical No. 4: Write an ALP to transfer data from source to destination location of internal/external data memory ### I Practical Significance 8051 microcontroller is used in embedded system. Understanding its memory organization helps in making optimal use of internal RAM and ROM and for applications which require additional memory, the external memory can be accessed. This practical will help the students to develop skills to transfer data from source to destination location. ### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': • To use different instructions to transfer, exchange contents of blocks. ### IV Relevant Course Outcome(s) • Interpret the program for 8051 in assembly language for the given operations. ### V Practical Outcome • Write an ALP to transfer data from source to destination location of internal/external data memory. ### VI Relevant Affective domain related Outcome(s) Follow ethical practices ### VII Minimum Theoretical Background **Block Transfer:** In block transfer the content of source memory location are transferred to destination memory location. Block transfer is done from internal RAM memory location internal RAM memory location to external RAM memory location. **External Memory**: 8051 microcontroller has 128 bytes of internal RAM memory (data memory) and 4 Kbytes of internal ROM memory (program memory). In addition to internal memory 64 Kbytes of data memory and 64 Kbytes of program can be interfaced with 8051 microcontroller To interface external memory to 8051 EA' pin should be connected to ground. . Fig. 4.1 Interfacing of 8051 with external memory ### VIII Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|--|----------| | 1. | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | ### IX Precautions to be Followed 1. Check rules/syntax of assembly programming. ### X Procedure ### Write Program - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL or INTEL and select 80c51AH 0r AT89C51. - 5. Type the program in text editor and save as .asm or .a51. ### **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. ### Run, Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. It will display all internal registers of 8051 and their contents. **SAMPLE PROGRAM 1**: Write a program to transfer a block of data from internal memory location 20H to internal memory location 40H. ### Step 1: Algorithm - 1. Set program starting address. - 2. Initialize memory pointer as source. - 3. Initialize memory pointer as destination - 4. Initialize iteration counter. - 5. Move content of first location into accumulator. - 6. Move the content of accumulator to first destination location. - 7. Increment source location. - 8. Increment destination location. - 9. Decrement iteration count, and jump to step 5, if not zero. - 10. Stop Step 2: Flowchart Fig. 4.2 Flowchart to transfer a block of data ### **Step 3: Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|-------|--------------|---| | C:0x0000 | | | ORG 0000H | | | C:0x0000 | 7820 | | MOV R0,#20H | ;Initialize source pointer R0 to 20H | | C:0x0002 | 7940 | | MOV R1, #40H | ;Initialize destination pointer R1 to 40H | | C:0x0004 | 7F05 | | MOV R7, #05H | ;Initialize byte counter | | C:0x0006 | E6 | UP: | MOV A, @R0 | ;Move the contents of first source location to Accumulator | | C:0x0007 | F7 | | MOV @R1,A | ;Move the contents of Accumulator to first destination location | | C:0x0008 | 08 | | INC R0 | ;Increment the contents of R0 | | C:0x0009 | 09 | | INC R1 | ;Increment the contents of R1 | | C:0x000A | DFFA | | DJNZ R7, UP | ; Decrement counter by one Is it zero? No ,jump to UP | | | | | END | | Fig 4.3 Output window **Problem statement 1 for student**: Write a program to transfer a block of five bytes from internal memory location 40H to
external memory location 2000H | Step 1: Algorithm | Step 2-Flowchart | |-------------------|------------------| **Step 3- Assembly Language Program Code** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|-------|-----------|----------| L | | | | | ## XI Resources Used | Sr. No. | Name of Resource. | Specification | Quantity | |---------|-------------------|---------------|----------| | 1 | | | | | XII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | |------|--| XIII | Precautions Followed (use blank sheet provided if space not sufficient) | | | | | | | | | | | | | ## XIV Observations for problem statement 1 (use blank sheet provided if space not sufficient) | Before exec | ution | After execution | | | |-----------------|-------|-----------------|------|--| | Memory location | Data | Memory location | Data | | | 40H | | 2000H | | | | 41H | | 2001H | | | | 42H | | 2002H | | | | 43H | | 2003H | | | | 44H | | 2004H | | | | XVII Interpretation of Results (Give meaning of the above obtained results) XVIII Conclusions and Recommendation XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA END [Space for Answers] | XV | Results (Output of the Program) | | | | | |--|-------|--|--|--|--|--| | XVII Conclusions and Recommendation XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA END | | | | | | | | XVII Conclusions and Recommendation XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA END | | | | | | | | XVII Conclusions and Recommendation XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA END | | | | | | | | XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA RRA END | XVI | Interpretation of Results (Give meaning of the above obtained results) | | | | | | XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA RRA END | | | | | | | | XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA RRA END | | | | | | | | XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA RRA END | | | | | | | | XVIII Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA RRA RRA END | XVII | Conclusions and Recommendation | | | | | | Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA END | Α• | Conclusions und Accommendation | | | | | | Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA END | | | | | | | | Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA END | | | | | | | | Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. Give syntax of two instructions used in program to exchange data. 2. Write a program to exchange higher nibble and lower nibble of data 48H. 3. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA END | | | | | | | | questions so as to ensure the achievement of identified CO. Give syntax of two instructions used in program to exchange data. Write a program to exchange higher nibble and lower nibble of data 48H. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA END | XVIII | | | | | | | Write a program to exchange higher nibble and lower nibble of data 48H. Write the contents of register A after execution of the following instructions MOV A, #28H. RRA RRA END | | questions so as to ensure the achievement of identified CO. | | | | | | Write the contents of register A after execution of the following instructions
MOV A, #28H.
RRA
RRA
END | | | | | | | | MOV A, #28H. RRA RRA END | | | | | | | | RRA
END | | | | | | | | END | | RRA | | | | | | | | RRA | | | | | | [Space for Answers] | | END | | | | | | | | [Space for Answers] | Microcontroller & Application (22426) | | |---------------------------------------|--------| | | | | | •••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | |
| | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | Microcontroller & Application (22426) | |---------------------------------------| | | | | | | | | | | ## XIX References / Suggestions for further reading - 1. www.circuitstoday.com/8051-programming-tutorial-chapter-1. - 2. https://thinkelectronics.org > Electronics Projects > 8051 Programs. - 3. http://www.polyengineeringtutor.com/Introduction%20to%208051.pdf ### **XX** Assessment Scheme | | Performance Indicators | | | | |---|---|-----|--|--| | | Process related: 15 Marks | | | | | 1 | Use of IDE tools for programming | 20% | | | | 2 | Coding and Debugging ability | 30% | | | | 3 | Follow ethical practices. | 10% | | | | | Product related: 10 Marks | | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | | 5 | Relevance of output of the problem definition | 15% | | | | 6 | Timely Submission of report, Answer to sample questions | 05% | | | | | Total (25 Marks) 100 % | | | | | Name of Team Members | | | | | |----------------------|--|--|--|--| | 1 | | | | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | | Dated signature of Teacher | | | |-------------------------|----------------------------|-------------------|--| | Process
Related (15) | Product Related (10) | Total (25) | | | | | | | ## Practical No. 5: Write ALP to find smallest / largest number from the given data bytes stored in internal/external data memory locations ### I Practical Significance CJNE and DJNZ instructions of 8051 microcontroller perform two tasks in a single instruction. The application of these instructions can be demonstrated in finding the smallest and largest numbers from a block of numbers. This practical will help the students to develop skills to use the compare and loop instructions. ### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency: 'Maintain microcontroller based systems': - Develop the code for the given problem. - Debug the code and rectify the errors. - Run the code - Use of application of compare and loop instructions. ### IV Relevant Course Outcome(s) • Interpret the program for 8051 in assembly language for the given operations. ### V Practical Outcome • Write ALP to find smallest/largest number from the given data bytes stored in internal/external data memory locations ### VI Relevant Affective domain related Outcome(s) • Follow ethical practices ### VII Minimum Theoretical Background Largest number or smallest number can be found from a block of data using the compare and loop instructions. 8051 microcontroller is an example of CISC machine which has few complex instructions like CJNE and DJNZ. ### CJNE destination, source, relative address. In 8051, the actions of comparing and jumping are combined into a single instruction called CJNE. It compares two operands and jump to relative address if they are not equal. In addition, it changes the CY flag to indicate if the destination operand is larger or smaller. This instruction is used to find the largest/smallest number. ### DJNZ Rn, relative These instruction decrements the contents of register and jump to the relative address if not zero. Both of these instructions are used to find the largest/smallest number. ### VIII Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------|--|----------| | 1. | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | ### IX Precautions to be Followed 1. Check rules / syntax of assembly programming. ### X Procedure ### **Write Program** - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL or INTEL and select 80c51AH 0r AT89C51. - 5. Type the program in text editor and save as .asm or .a51. ### **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. ### Run, Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. It will display all internal registers of 8051 and their contents. - 11. Note down the readings in observation table **SAMPLE PROGRAM 1:** Write ALP to find smallest number from the given five bytes stored in internal memory locations 40H onwards and store the result in location 50H. ### **Step 1: Algorithm** - 1. Initialize source pointer R0 to 40H. - 2. Initialize byte counter. - 3. Load Accumulator with largest one byte number. - 4. Move the contents of source location to B register. - 5. Compare the two numbers. - 6. If number is less then next number then go to step 8. - 7. Replace number with next number which is largest. - 8. Increment memory pointer to read next number in the array. - 9. Decrement byte counter by 1. - 10. If byte counter is not zero go to step 4. - 11. Store the result. - 12. Stop ## Step 2: Flowchart Fig 5.1 Flowchart to find smallest number **Step 3: Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|----------|--------------|--------------------------------------| | | | | ORG 0000H | | | C:0x0000 | 7840 | | MOV R0,#40H | ;Initialize source pointer R0 to 40H | | C:0x0002 | 7905 | | MOV R1, #05H | ;Initialize byte counter | | C:0x0004 | 74FF | | MOV A, #0FFH | | | C:0x0006 | 86F0 | UP: | MOV B,@R0 | ;read first byte to B register | | C:0x0008 | B5F000 | | CJNE A,B, | ;compare first byte to max value | | | | | DOWN | | | C:0x000B | 4002 | DOWN: | JC A_SMALL | ;check carry | | C:0x000D | E5F0 | | MOV A,B | ;move small value to A | | C:0x000F | 08 | A_SMALL: | INC R0 | ;Increment the contents of R0 | | C:0x0010 | D9F4 | | DJNZ R1, UP | ; Decrement counter by one Is it | | | | | | zero? No ,jump to UP | | C:0x0012 | F550 | | MOV 50H, A | ;store smallest number to 50H | | C:0x0014 | 80FE | | SJMP \$ | ;Halt after the smallest value is | | | | | | available | | | | | END | | Fig 5.2 Output window **Problem statement for student:** Write ALP to find largest number from the given five bytes stored in memory locations 20H onwards and store the result in location 60H | Step 1: Algorithm | Step 2-Flowchart | |-------------------|------------------| ## **Step 3- Assembly Language Program Code** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|-------|-----------|----------| _ | | |------------|------------|-------| | VI | Resources | Lland | | ^ 1 | NESOHI CES | | | Sr.
No. | Name of Resource. | Specification | Quantity | |------------|-------------------|---------------|----------| | 1 | | | | | XII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | | | |------|--|--|--| | | | | | | | | | | | XIII | Precautions Followed (use blank sheet provided if space not sufficient) | | | | | | | | | | | | | | | | | | ## XIV Observations for sample program (use blank sheet provided if space not sufficient) | Before execution | | After execution | | |------------------|------|-----------------|------| | Memory location | Data | Memory location | Data | | 40H | | | | | 41H | | 50H | | | 42H | | | | | 43H | | | | | 44H | | | | | XV | Results (Output of the Program) | |-------|--| | | | | | | | | | | XVI | | | | | | | | | XVII | Conclusions and Recommendation | | | | | | | | | | | XVIII | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. 1. State the need of counter in finding the largest or smallest number. 2. List any four instructions to exchange data and give their syntax. 3. Write and execute an ALP to count zero's in a data 64H 4. Write and execute an ALP to find the average of five numbers | | | [Space for Answers] | | ••••• | | | ••••• | | | ••••• | ••••• | | | | | | | | | | | | Microcontroller & Application (22426) | |---------------------------------------| wherocontroller & Application (22426) | |---| | | | | | | | | | | | ••••••••••••••••••••••••••••••••••••••• | ### XIX References / Suggestions for
further reading - 1. http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/microcontrollers/micro/ui/Course_home2_6.htm - 2. https://www.elprocus.com/8051-assembly-language-programming/ - 3. https://thinkelectronics.org/8051-program-to-find-smallest-number-in-blockhttp://what-when-how.com/8051-microcontroller/logic-and-compare-instructions - $4. \ \ \, \underline{https://www.pearson.com/us/higher-education/product/Mazidi-8051-Microcontroller-and-Embedded-Systems-The/9780138610227.html}$ ### XX Assessment Scheme | | Weightage | | |---|---|-------| | | 60% | | | 1 | Use of IDE tools for programming | 20% | | 2 | Coding and Debugging ability | 30% | | 3 | Follow ethical practices. | 10% | | | 40% | | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition | 15% | | 6 | Timely Submission of report, Answer to sample | 05% | | | questions | | | | Total (25 Marks) | 100 % | | 1 | | |---|--| | 2 | | | 3 | | Name of Team Members | Ma | Dated signature of Teacher | | | |-------------------------|----------------------------|-------------------|--| | Process
Related (15) | Product
Related (10) | Total (25) | | | | | | | # Practical No. 6: Write ALP for arranging numbers in ascending / descending order stored in external memory locations. ### I Practical Significance Sorting is any process of arranging information systematically in ascending or descending order. This allows us to write better programs like indexing to fetch the information faster, allows faster search techniques, removes duplicate information and has many uses in statistical applications. This practical will help the students to develop skills to understand how to access data from external memory and use of branch instructions. ### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools**: Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Develop the code for the given problem. - Debug the code and rectify the errors. - Run the code - Use of application of instructions related to external memory. ### IV Relevant Course Outcome(s) • Interpret the program for 8051 in assembly language for the given operations. ### V Practical Outcome Write ALP for arranging numbers in ascending /descending order stored in external memory locations ### VI Relevant Affective domain related Outcome(s) • Follow ethical practices. ### VII Minimum Theoretical Background ### Ascending order/Descending order The block of data consists of numbers in random order, to arrange these numbers in ascending or descending order bubble sort method is used. If the given block of data has to be sorted in ascending order, then bubble sort will start by comparing the first element of the block with the second element, if the first element is greater than the second element, it will swap both the elements, and then move on to compare the second and the third element, and so on. Byte counter -to access data from block of data **Pass counter** —to repeat this comparison are required to arrange the numbers in ascending or descending order. Branch instructions like JNC—jump if no carry and CJNE—compare and jump if not equal to are used to sort the numbers. **External data memory** is read/write. Since external data memory is indirectly accessed through a data pointer register (which must be loaded with an address), it is slower than access to internal data memory. DPTR, as the name suggests, is used to point to data. It is used by a number of commands which allow the 8051 to access external memory. When the 8051 accesses external memory it will access external memory at the address indicated by DPTR. MOVX instruction MOVX is a widely used instruction allowing access to external data memory space. To bring externally stored data into the CPU, we use the instruction "MOVX A, @DPTR". This instruction will read the byte of data pointed to by register DPTR and store it in the accumulator ### VIII Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|--|----------| | 1 | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | ### IX Precautions to be Followed 1. Check rules / syntax of assembly programming. ### X Procedure ### Write Program - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL or INTEL and select 80c51AH 0r AT89C51. - 5. Type the program in text editor and save as .asm or .a51. ### **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. ### Run, Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. It will display all internal registers of 8051 and their contents. - 11. Note down the values of external memory location 3000H in the observation table. **SAMPLE PROGRAM 1:** Write ALP for arranging five numbers in ascending order stored in external memory location 3000H. ### Step 1-Algorithm - 1. Initialize comparison or pass counter - 2. Initialize memory pointer to read number from array - 3. Initialize byte counter - 4. Read numbers from the array - 5. Compare two numbers. - 6. If number <=next number, then go to step 9. - 7. Interchange or swap numbers. - 8. Increment memory pointer to read next number from array. - 9. Decrement byte counter by one. - 10. If word counter is not equal to zero, then go to step 2. - 11. Stop ### **Step 2-Flow Chart** Fig 6.2 Flowchart to arrange numbers in ascending order Step 3- Assembly Language Sample Program | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|---------------------|--| | | | | | | | | | | ORG 0000h | | | C:0x0000 | 7805 | UP1: | MOV R0, #05H | ;Initialize pass counter | | C:0x0002 | 903000 | | MOV DPTR,
#3000H | ;Initialize memory pointer | | C:0x0005 | 7904 | UP: | MOV R1, #04H | ;Initialize byte counter | | C:0x0007 | AA82 | | MOV R2, DPL | ;Save the lower byte address | | C:0x0009 | E0 | | MOVX A, @DPTR | ;Read number from array | | C:0x000A | F5F0 | | MOV 0F0H, A | ;Transfer the number to B register | | C:0x000C | A3 | | INC DPTR | ;Increment memory pointer | | C:0x000D | E0 | | MOVX A, @DPTR | ;Read next number from array | | C:0x000E | B5F002 | | CJNE A, 0F0H, DN | ;Compare number with next number | | C:0x0011 | 011C | | AJMP SKIP | | | C:0x0013 | 5007 | DN: | JNC SKIP | ;If number>next number then go to SKIP | | C:0x0015 | 8A82 | | MOV DPL, R2 | ;Else exchange the number wit next number | | C:0x0017 | F0 | | MOVX @DPTR, A | | | C:0x0018 | A3 | | INC DPTR | | | C:0x0019 | E5F0 | | MOV A, 0F0H | | | C:0x001B | F0 | | MOVX @DPTR, A | | | C:0x001C | D9E7 | SKIP: | DJNZ R1, UP | ;Decrement byte and if count byte is not zero go to Up | | C:0x001E | D8E0 | | DJNZ R0, UP1 | ;Decrement pass counter and if
not zero go to UP1 | | | | | END | | Fig 6.2 Output window 1) **Problem statement for student:** Write ALP for arranging five numbers in descending order stored in external memory location 2000H. Step 1-Algorithm **Step 2-Flowchart** **Step 3- Assembly Language Program** | Hex Code | | | |----------|----------|--| | | | | | | | | | | | | | | <u> </u> | ## XI Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | | | lank sheet provided if spa | | | |--|-------------|---|-------------------|--------| ••••• | | | | | Tecautions Followed | | | | | | bservations for samp | ole program | (use blank sheet provided | l if space not su | iffici | | bservations for samp | ole program | (use blank sheet provided | l if space not su | ıffici | | bservations for samp | ole program | (use blank sheet provided | l if space not su | ıffici | | bservations for samp Before execu Memory location | ole program | (use blank sheet provided After execu Memory location | l if space not su | ıffici | | bservations for samp | ole program | (use blank sheet provided | l if space not su | iffici | | Before execu Memory location 3000H | ole program | (use blank sheet provided After execu Memory location 3000H | l if space not su | uffici | | Before execu Memory location 3000H 3001H | ole program | (use blank
sheet provided After execu Memory location 3000H 3001H | l if space not su | affici | | Before execu
Memory location 3000H 3001H 3002H | ole program | After execu Memory location 3000H 3001H 3002H | l if space not su | ıffici | | Microco | ontroller & Application (22426) | |---------|---| | XVI | Interpretation of Results (Give meaning of the above obtained results) | | | | | XVII | Conclusions and Recommendation (Actions/decisions to be taken based on the interpretation of results). | | | | | | | | 1. | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. Write a program to (a) load the accumulator with the value 55H, and (b) complement the ACC 7 times. Discuss the program ROM space allocation for each of the following cases. (a) EA' = 0 for the 8751 (89C51) chip. (b) EA' = Vcc with both on-chip and off-chip ROM for the 8751. (c) EA' = Vcc with both on-chip and off-chip ROM for the 8752. | | | [Space for Answers] | Microcontroller & Application (22426) | | |---------------------------------------|-------| | | | | | ••••• | | | ••••• | ••••• | ••••• | | | ••••• | ••••• | | Micro | controller & Application (22426) | |--------|--| | | | | | | | •••••• | | | ••••• | | | XIV | References / Suggestions for further reading | - 1. http://nptel.ac.in/courses/Webcourse-contents/IIT- - KANPUR/microcontrollers/micro/ui/Course_home2_6.htm - 2. https://www.youtube.com/watch?v=FOx8X8U4AXE - 3. https://thinkelectronics.org/8051-program-arrange-numbers-ascending-order/ - 4. https://www.pearson.com/us/higher-education/product/Mazidi-8051-Microcontroller-and-Embedded-Systems-The/9780138610227.html #### **XX** Assessment Scheme | | Weightage | | | |---|---|-----|--| | | Process related: 15 Marks | | | | 1 | Use of IDE tools for programming | 20% | | | 2 | Coding and Debugging ability | 30% | | | 3 | Follow ethical practices. | 10% | | | | 40% | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | 5 | Relevance of output of the problem definition | 15% | | | 6 | Timely Submission of report, Answer to sample questions | 05% | | | | 100 % | | | | 1 | | |---|--| | 2 | | | 3 | | | 4 | | Name of Team Members | Marks Obtained | | | Dated signature of
Teacher | |-------------------------|-------------------------|------------|-------------------------------| | Process
Related (15) | Product
Related (10) | Total (25) | | ## Practical No. 7: Write an ALP to generate delay using register. #### I Practical Significance Creating a delay is most important and widely used function in almost all microcontroller-based programming. Its use varies from creating a pause to allow microcontroller to interact with real world, like blinking of LED, monitoring a switch or input at regular interval. In signal processing, a "delay" is used to monitor signal at a predetermined sampling rate. This practical will help the students to develop skills to create the time delay by using instruction machine cycles and microcontroller crystal frequency. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems.. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ## III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Develop the code for given problem. - Debug the code and rectify the errors. - Run the code - To generate delays by appropriate delay calculations. #### IV Relevant Course Outcome(s) • Interpret the program by using timer, interrupt and serial ports/parallel ports. #### V Practical Outcome • Write an ALP to generate delay using register. #### VI Relevant Affective domain related Outcome(s) • Follow ethical practices. ## VII Minimum Theoretical Background The delay length in 8051 microcontroller depends on two factors: - 1. The crystal frequency. - 2. The number of clock per machine. ## Machine cycle for the 8051 The CPU takes a certain number of clock cycles to execute an instruction. In the 8051 family, these clock cycles are referred to as *machine cycles*. In the 8051 family, the length of the machine cycle depends on the frequency of the crystal oscillator connected to the 8051 systems. The crystal oscillator, along with on-chip circuitry, provides the clock source for the 8051 CPU. The frequency of the crystal connected to the 8051 family can vary from 4 MHz to 30 MHz, depending on the chip rating and manufacturer. Very often the 11.0592 MHz crystal oscillator is used to make the 8051 -based system compatible with the serial port of the IBM PC. In the original 8051, one machine cycle lasts 12 oscillator periods. Therefore, to calculate the machine cycle for the 8051, we take 1/12 of the crystal frequency, then take its inverse, as shown below: For 11.0592MHz/12 = 921.6KHz; machine cycle is 1/921.6KHz=1.085microsecond Various 8051 versions and its clocks per machine cycle are as shown below: | Chip / manufacturer | Clocks per | | |--------------------------------|---------------|--| | | machine cycle | | | AT89C51 Atmel | 12 | | | P89C54X2 Philips | 6 | | | DS85000Dalias Semi | 4 | | | DS 89C420/30/40/50 Dalias Semi | 1 | | There are two methods for delay calculations which are: - 1. LOOP Technique. - 2. Using Timer - 1. **LOOP TECHNIQUE**: This is very simple software-based delay technique. In this method we load a number in a RAM location and decrement it till it becomes Zero. **LOOP WITHIN A LOOP:** For longer delays we use this technique. In previous case only a single RAM location was used, here the number depends on the number of LOOPS used **2. USING TIMER:** Many times, we require precise internal time delays between two actions this can be accomplished using software techniques like Loop Technique, but these delays keep the processor occupied because of which other important functions cannot be done. To relieve the processor of this burden we can use TIMERS provided by the controller. 8051 has two internal timers T0 and T1 (8052 has 3 timers T0, T1 and T2) these timers can be controlled individually. The following example explains how to calculate time delay for Loop method: For an 8051 system of 11.0592 MHz, find the time delay for the following subroutine: | | | | Machine | Cycle | |--------|------|---------|---------|-------| | DELAY: | MOV | R3,#250 | . 1 | • | | HERE: | NOP | | 1 | | | | DJNZ | R3,HERE | 2 | | | | RET | | 2 | | #### **Solution:** The time delay inside the HERE loop is $[250(1+1+1+1+2)] \times 1.085 \mu sec=1500 \times 1.085 \mu sec = 1627.5 \mu sec$. Adding the two instructions outside the loop we have 1627.5 $\mu sec + 3 \times 1.085 \mu sec = 1630.755 \mu sec$ ## VIII Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|--|----------| | 1 | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | #### IX Precautions to be Followed 1. Check rules / syntax of assembly programming. #### X Procedure ### **Write Program** - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL or INTEL and select 80c51AH 0r AT89C51. - 5. Type the program in text editor and save as .asm or .a51. ## **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. ## Run, Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. It will display all internal registers of 8051 and their contents. - 11. Observe the waveform on logic analyzer and sketch the same in observations **SAMPLE PROGRAM 1:** Write a program to toggle all the bits of port 1 every 200 ms. Crystal frequency is 11.0592 MHz #### Step- Algorithm - 1. Move the contents 55H into accumulator. - 2. Send the contents of Accumulator to port P1. - 3. Call delay routine - 4. Complement the contents of accumulator. - 5. Jump back to repeat the steps. - 6. Write a delay routine for 200 msec. ## **Step 2-Flow Chart** Fig7.1 Flowchart to toggle all the bits of
port 1 ## Step 3-Assembly Language Program | Memory | Hex | Label | Mnemonics | Comments | |----------|------|--------|----------------|-------------------------------| | Address | Code | | | | | | | | ORG 0000H | | | C:0x0000 | 800D | | SJMP START | | | | | | | | | C:0x0002 | 7D02 | DELAY: | MOV R5, #2 | ;DELAY routine for 200 msec | | C:0x0004 | 7CB4 | HERE1: | MOV R4, #180 | | | C:0X0006 | 7BFF | HERE2: | MOV R3, #255 | | | C:0X0008 | DBFE | HERE3: | DJNZ R3, HERE3 | | | C:0X000A | DCFA | | DJNZ R4, HERE2 | | | C:0x000C | DDF6 | | DJNZ R5, HERE1 | | | C:0x000E | 22 | | RET | | | | | | | ;Load the data 55h into | | C:0x000F | 7455 | START: | MOV A, #55H | accumulator | | C:0X0011 | F590 | AGAIN: | MOV P1, A | ;Send the contents of A to P1 | | C:0x0013 | 1102 | | ACALL DELAY | ;Call Delay routine | | C:0x0015 | F4 | | CPL A | ;Complement the contents of A | | C:0x0016 | 80F9 | | SJMP AGAIN | ;Branch to Again | | | | | END | ;Stop. | #### Sample Calculation of delay: DELAY: MOV R5, #2 2 machine cycles HERE1: MOV R4, #180 2 machine cycles HERE2: MOV R3, #255 2 machine cycles HERE3: DJNZ R3, HERE3 2 machine cycles DJNZ R4, HERE2 2 machine cycles DJNZ R5, HERE1 2 machine cycles RET 1 machine cycle Machine cycles in HERE3 loop = $255 \times 2 = 510$ machine cycles Machine cycles in HERE2 loop = 4 + 180 x (machine cycles for HERE3) = 4 + 180 x 510 = 91,804 machine cycles Machine cycles in HERE1 loop = 4 + 2 x (machine cycles for HERE2) = 4 + 2 x 91804 = 183,608 machine cycles Machine cycle including RET = 1 + 183,608 = 183,609 Therefore, the total delay by subroutine DELAY = 183,608 x 1.0852 msec = 199.2158 msec = approx. 200 msec Fig7.2 Output Window 1. **Problem statement for student**: Write a subroutine to generate a delay of 10ms # **Step 3- Assembly Language Program** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|-----------|----------| # XI Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | XII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | |------|--| XIII | Precautions Followed (use blank sheet provided if space not sufficient) | | | | | | | | | | | | | | XIV | Observations for sample program (use blank sheet provided if space not sufficient) Draw the waveform and mention the delay | |-------|--| | | | | XV | Results (Output of the Program) | | AV | Mesuits (Output of the Frogram) | | | | | | | | XVI | Interpretation of Results (Give meaning of the above obtained results) | | | | | | | | XVII | Conclusions and Recommendation | | XVIII | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO | | | For an 8051 microcontroller how long will it take to execute the following instruction. The crystal frequency is 11.0592 MHz i) MOV R3,55H ii) DEC R2. On what factors does delay length depend upon? | | | 3. For three different 8051 versions, what will be the machine cycle for the following crystal frequencies: i)11.0592MHz ii) 16MHZ iii) 20MHz .Find period of machine cycle in each case | | | [Space for Answers] | | | | | ••••• | | | Micro | controller | & Application (22426) | | | |---|---------------------------------------|--|---|-------| · • • • • • • • • • • • • • • • • • • • | | | | •••• | · • • • • • • • • • • • • • • • • • • • | | | | ••••• | Ali
edi | e 8051 Microcontroller and Embedded system Using Assemb
Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso
tion, Delhi,2008, ISBN 978-8177589030 | | | | XX | Ali
edi
2. <u>htt</u> j | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM | | | | XX | Ali
edi
2. <u>htt</u> j | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso
tion, Delhi,2008, ISBN 978-8177589030
ps://www.youtube.com/watch?v=TWMai3oirnM
ment Scheme | on /Prentice Hall, , | | | XX | Ali
edi
2. <u>htt</u> j | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso
tion, Delhi,2008, ISBN 978-8177589030
os://www.youtube.com/watch?v=TWMai3oirnM
ment Scheme
Performance Indicators | on /Prentice Hall, , Weightage | | | XX | Ali
edi
2. <u>htt</u> j | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso tion, Delhi,2008, ISBN 978-8177589030 ps://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks | on /Prentice Hall, , | | | XX | Ali edi 2. http | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso tion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming | Weightage 60% | | | XX | Ali edi 2. <u>http</u> Assessi 1 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso tion, Delhi,2008, ISBN 978-8177589030 ps://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks | Weightage 60% 20% | | | XX | Ali edi 2. http Assessi 1 2 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability | Weightage 60% 20% 30% | | | XX | Ali edi 2. http Assessi 1 2 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearso tion, Delhi,2008, ISBN 978-8177589030 ps://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. | Weightage 60% 20% 30% 10% | | | XX | Ali edi 2. http Assessi 1 2 3 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. Product related: 10 Marks | Weightage 60% 20% 30% 10% 40% | | | XX | Ali edi 2. http Assessi 1 2 3 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. Product related: 10 Marks Correctness of algorithm/ Flow chart | Weightage 60% 20% 30% 10% 40% 20% | | | XX | Ali edi 2. http | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. Product related: 10 Marks Correctness of algorithm/ Flow chart Relevance of output of the problem definition | Weightage 60% 20% 30% 10% 40% 20% 15% | | | XX | Ali edi 2. http Assessi 1 2 3 4 5 6 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. Product related: 10 Marks Correctness of algorithm/ Flow chart Relevance of output of the problem definition Timely Submission of report, Answer to sample questions Total (Marks) | Weightage 60% 20% 30% 10% 40% 20% 15% 05% | | | | Ali edi 2. http Assessi 1 2 3 4 5 6 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. Product related: 10 Marks Correctness of algorithm/ Flow chart Relevance of output of the problem definition Timely Submission of report, Answer to sample questions | Weightage 60% 20% 30% 10% 40% 20% 15% 05% | | | | Ali edi 2. http Assessi 1 2 3 4 5 6 | Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearsotion, Delhi,2008, ISBN 978-8177589030 os://www.youtube.com/watch?v=TWMai3oirnM ment Scheme Performance Indicators Process related: 15 Marks Use of IDE tools for programming Coding and Debugging ability Follow ethical practices. Product related: 10 Marks Correctness of algorithm/ Flow chart Relevance of output of the problem definition Timely Submission of report, Answer to sample questions Total (Marks) | Weightage 60% 20% 30% 10% 40% 20% 15% 05% | | | N
 Dated signature of
Teacher | | | |----------------------|-------------------------------|------------|--| | Process Related (15) | Product Related (10) | Total (25) | | | | | | | 3 # Practical No. 8: Write an ALP to transfer 8-bit data serially on serial port. ## I Practical Significance Many applications require microcontrollers to either accept the data in serial form or output the data in serial form. Serial communication is commonly used in applications such as industrial automation systems, scientific analysis and certain consumer products. This practical will help the students to develop skills to understand the concepts of serial port and how they are interfaced with microcontroller. ## II Relevant Program Outcomes (POs) - **Discipline knowledge**: Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools**: Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ## III Competency and Practical skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Develop the code for the given problem - Debug the code and rectify the errors. - Run the code - Select appropriate value of TH1 register needed for the corresponding baud rate #### IV Relevant Course Outcome(s) • Interpret the program by using timer, interrupt and serial ports /parallel ports #### V Practical Outcome(PROs) • Write an ALP to transfer 8 bit data serially on serial port #### VI Relevant Affective domain related Outcome(s) • Follow ethical practices. #### VII Minimum Theoretical Background In serial communication two formats of data transfer are used 1) Asynchronous 2) Synchronous. One of the major differences is that in Synchronous Transmission, the sender and receiver should have synchronized clocks before data transmission. Whereas Asynchronous Transmission does not require a clock, but it adds a parity bit to the data before transmission. ## 1. Asynchronous data transfer. Fig. 8.1 Asynchronous data transfer ## 2. Synchronous data transfer. Fig. 8.2 Synchronous data transfer For serial communication SCON SFR is used. It controls the serial bits. #### **SCON REGISTER:** Fig. 8.3 SCON register format #### **Baud Rate** In serial communication the rate at which data bits are transmitted generates a term baud rate, the baud rate is defined as bits/seconds or the changes in voltage levels/second. Table No: 8.1 Values of Timer 1 Register for various Baud Rates | Baud Rate | TH1(Decimal) | TH1(Hex) | |-----------|--------------|----------| | 9600 | -3 | FD | | 4800 | -6 | FA | | 2400 | -12 | F4 | | 1200 | -24 | E8 | Note: XTAL = 11.0592 MHz. #### **SBUF Register** Serial buffer SFR is used for selection of baud rate in serial communication. SBUF is a 8 bit register used in serial communication of 8051. Serial data is send by writing to the register SBUF while data is received by reading the same register. The SBUF is as shown below: | Bit 7 | | | | Bit o | |-------|--|--|--|-------| | | | | | | SBUF has physically two registers, one write only and other is read only. Both registers use one address 99H Fig 8.4 Interfacing of 8051 microcontroller to PC with serial communication A line driver such as the MAX232 chip is required to convert RS232 voltage levels to TTL levels, and vice versa. 8051 has two pins that are used specifically for transferring and receiving data serially. These two pins are called TXD and RXD and are part of the port 3 group (P3.0 and P3.1) these pins are TTL compatible; therefore, they require a line driver to make them RS232 compatible. #### VIII Resources required | Sr.
No. | Instrument/
Components | Specification | Quantity | |------------|---------------------------|---|----------| | 1 | Microcontroller
kit | keyboard interfacing facility. Hex keypad facility, single | | | 2 | Desktop PC | Loaded with open source IDE, simulation and program downloading software. | 1 No. | #### IX Precaution • Check rules / syntax of assembly programming. #### X Procedure ## Write Program - 1. Start Keil by double clicking on Keil icon. - 2. Create a new project. - 3. Select device for Target. - 4. Double click on ATMEL or INTEL and select 80c51AH 0r AT89C51. - 5. Type the program in text editor and save as .asm or .a51. #### **Compile the Program** - 6. Right click on source group and build the target. - 7. Check for any errors in the output window and remove if any. #### Run. Debug the Program - 8. Click on Debug and start simulation and start/stop debug session. - 9. Run the program step by step. - 10. Observe the output on the project window. It will display all internal registers of 8051 and their contents. The output can be observed in UART1 window. - 11. Hyper Terminal, a Windows XP application, can be used to receive or transmit serial data through RS232. To open Hyper Terminal, go to Start Menu, select all programs, go to Accessories, click on Communications and select Hyper Terminal. - 12. To start a new connection, go to File menu and click on new connection. The connection window opens up. Give a name to your connection and select 1st icon and click on OK. Connection property window opens here. Select Bit rate as 9600bps, Data bits 8, Parity as none, stop bit 1, Flow control none and click OK. Now the serial data can be read on hyper terminal. - 13. In program, Timer1 is used with auto reload setting. The baud rate is fixed to 9600bps by loading TH1 to 0xFD. The value 0x50 is loaded in the SCON register. This will initialize the serial port in Mode1. The program continuously receives a character (say 'a') from the serial port of the computer and transmits it back ## **SAMPLE PROGRAM 1:** Write an ALP to transfer 8 bit data serially on serial port. ## Step 1: Algorithm - 1) Initialize timer 1 and set it in mode 2. - 2) Set the baud rate to 4800. - 3) Move 50H in SCON register. - 4) Start timer 1. - 5) Move letter 'A' to SBUF register. - 6) Wait till the last bit is transmitted. - 7) Clear TI flag for the next character. - 8) Keep sending 'A'. - 9) Stop ## Step 2: Flowchart Fig. 8.5 Flowchart to transfer 8 bit data serially on serial port #### **Step 3- Assembly Language Program** | Memory | Hex Code | Label | Mnemonics | Comments | |----------|----------|-------|----------------|-------------------------------| | Address | | | | | | C:0x0000 | 758920 | | MOV TMOD, #20H | ;Timer 1,mode 2 | | C:0x0003 | 758DFA | | MOV TH1, #-6 | ;4800 baud rate | | C:0x0006 | 759850 | | MOV SCON, #50H | ;8 bit,1 stop, REN enabled | | C:0x0009 | D28E | | SETB TR1 | ;Start timer 1 | | C:0x000B | 759941 | | MOV SBUF,#"A" | ;Letter "A" to be transferred | | C:0x000E | 3099FD | HERE: | JNB TI, HERE | ;Wait for the last bit | | C:0x0011 | C299 | | CLR TI | ;Clear T1 for next character | | C:0x0013 | 80FE | | SJMP \$ | ;Wait | | | | | END | | Fig 8.6 Output window **Problem statement 1 for student:** Write a program to transfer to send letter "YES" at baud rate 9600 continuously. | Step 1-Algorithm | Step 2-Flowchart | |------------------|------------------| **Step 3- Assembly Language Program Code** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|-----------|----------| # XI Resources Used | Sr. No. | Instrument /Components | Specification | Quantity | |---------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | Actual F | Procedure F | · | - | - | | - | |----------|---|---|-----------|---|-------|---| | | ••••• | |
 | | | | | | • | |
 | | | | | | | |
 | | ••••• | | | | | |
••••• | | ••••• | | | | | |
••••• | | ••••• | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | XIII | Precautions Followed (use blank sheet provided if space not sufficient) | |-------|--| | | | | | | | XIV | Observations for sample program (use blank sheet provided if space not sufficient) (UART window) | | | | | | | | | | | XV | Result (Output of the Program) | | | | | | | | XVI | Interpretation of Results (Give meaning of the above obtained results) | | | | | | | | VV/II | Caralysians and Decomposed of an | | AVII | Conclusions and Recommendation | | | | | | | | XVIII | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more | | | such questions so as to ensure the achievement of identified CO. 1. State the SFR used to transfer character by serial communication. | | | 2. With XTAL = 11.0592 MHz, find the TH1 value needed to have the following band rates. (a) 9600 (b) 2400 (c) 1200 | | | 3. Name the timer of 8051 used to set the baud rate. | | | [Space for Answers] | | Microcontroller & Application (22426) | | |---------------------------------------|-------| | | | | | ••••• | | | ••••• | ••••• | ••••• | | | ••••• | | |
| ••••• | | Microcontroller & Application (22426) | |---------------------------------------| | | | | | | | | | | | | ## XIX References / Suggestions for further Reading - 1 <u>http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/microcontrollers/micro/ui/Course_home2_6.htm</u> - 2 <u>https://techdifferences.com/difference-between-synchronous-and-asynchronous-transmission.html</u> - 3 https://www.engineersgarage.com/microcontroller/8051projects/interface-serialport-R #### XX Assessment Scheme | | Performance indicators | | | | | | |--------|---|-----------|--|--|--|--| | Proces | 60%(15) | | | | | | | 1 | 1 Use of IDE tools for programming | | | | | | | 2 | Coding and Debugging ability | 30% | | | | | | 3 | Follow ethical practices. | 10% | | | | | | Produ | 40%(10) | | | | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | | | | 5 | 5 Relevance of output of the problem definition | | | | | | | 6 | 6 Timely Submission of report, Answer to sample questions | | | | | | | | Total | 100 %(25) | | | | | | Name | of | Team | Members | | |------|----|------|---------|--| | | | | | | | 1 | | |---|--| | 2 | | | 3 | | | 4 | | | | Dated signature of Teacher | | | |-------------------------|----------------------------|-------------------|--| | Process
Related (15) | Product
Related (10) | Total (25) | | | | | | | # Practical No. 9: Interface LED with microcontroller and turn it ON with microcontroller interrupt. #### I Practical Significance LED is most common semiconductor device used in many electronic system as visual indicator or signal transmission / power indication purposes. The LEDs are also used for design message display boards and traffic control signal lights etc. Interrupts are most important feature of Microcontroller. This practical will help the students to develop skills to understand the fundamental interfacing concept for 8051 microcontrollers and significance of Interrupts. ## II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Interface LED and switch to microcontroller. - Use of key to provide external interrupt on pin P3.2. #### IV Relevant Course Outcome(s) • Interpret the program by using timer, interrupt and serial ports /parallel ports. #### V Practical Outcome Interface LED with microcontroller and turn it ON with microcontroller interrupt. #### VI Relevant Affective domain related Outcome(s) - Follow safe practices. - Maintain tools and equipment. - Follow ethical practices. #### VII Minimum Theoretical Background As its name suggests, **Interrupt** is a subroutine call that interrupts microcontrollers main operations or work and causes it to execute any other program, which is more important at the time of operation. The feature of Interrupt is very useful as it helps in case of emergency operations. An Interrupts gives us a mechanism to put on hold the ongoing operations, execute a subroutine and then again resume its original task. Generally five interrupt sources are there in 8051 Microcontroller. Out of these, <u>INTO</u> and <u>INT1</u> are external interrupts that could be negative edge triggered or low level triggered. They are located on pins P3.2 and P3.3 of port 3 respectively. They are enabled or disabled using the IE register when the external interrupt flag is edge triggered, the CPU clears interrupt flag in response to the interrupt call. When it is level triggered then the interrupt flag is cleared at high level of the interrupt signal. The table shows the vector addresses for the interrupts: | Interrupt | Flag | Vector | |----------------------|----------|--------| | System reset | RST | 0000H | | External interrupt 0 | IE0 | 0003H | | Timer 0 | TF0 | 000BH | | External interrupt 1 | IE1 | 0013H | | Timer 1 | TF1 | 001BH | | Serial port | RI or TI | 0023H | Fig 9.1 IE and IP register format **Light emitting diodes**: LEDs are the most commonly used components in many applications. It has two terminals positive and negative as shown in the figure: Fig 9.2 LED diagram Commonly used LEDs will have voltage drop of 1.9v to 2.1v and current of 15mA (Typically) or 20mA(high brightness) to glow at full intensity. This is applied through the output pin of the microcontroller ## VIII Practical Circuit diagram: ## a) Sample Circuit diagram Fig 9.3 8051 connection to LED and switch ## b) Practical setup Fig 9.4 Practical Setup ## c) Simulation diagram Fig 9.5 Simulation diagram d) Actual circuit used in Laboratory e) Actual Experimental set up used in laboratory ## IX Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|---|----------| | 1. | Microcontroller
kit | Single board system with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2. | Desktop PC | Loaded with open source IDE, simulation and program downloading software. | 1 No. | #### **X** Precautions to be followed 1. Use always current limiting resistor before LED connected to microcontroller ## XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (Keil IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the program. - 7. Download hex code in EPROM/Flash memory of microcontroller. - 8. Interface LED to microcontroller as per circuit diagram shown in fig. - 9. Observe the LED to glow when external interrupt occurs on P3.2. # **SAMPLE PROGRAM 1**: : Interface LED with microcontroller and turn it ON with microcontroller interrupt. # Step 1: Algorithm Main Program - 1. Initialize port P1 as output. - 2. Initialize port P3 as input. - 3. Clear pin P1.1 - 4. Enable interrupt INTO. - 5. Wait for Interrupt. #### INTO ISR - 1. Set pin P1.1 - 2. Return from ISR **Step 2: Flowchart** Fig 9.6 Flowchart to turn LED ON with microcontroller interrupt. **Step 3: Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|--------|--------------|-------------------------------------| | | | | ORG 0000H | | | C:0x0000 | 020006 | | LJMP START | | | | | | ORG 0003H | ;Interrupt service routine for INT0 | | C:0x0003 | D291 | | SETB P1.1 | | | C:0x0005 | 32 | | RETI | | | C:0x0006 | 759000 | START: | MOV P1,#00H | ;Main program for initialization | | C:0x0009 | 75B0FF | | MOV P3,#0FFH | | | C:0x000C | 75A881 | | MOV IE,#81H | ;Enable hardware interrupt INT0 | | C:0x000F | 80FE | HERE: | SJMP HERE | | | | | | END | | **Problem statement for student** Interface two LEDs with microcontroller and turn them ON with microcontroller interrupts. | Step 1: Algorithm | Step 2: Flowchart | |-------------------|-------------------| Microcontroller & Application (22426) | | | | | | | |---------------------------------------|------------------------|-------------|----|---------------|--|----------| Step 3- As | ssembly Lan | guage Progr | am | | | | | Memory
Address | Hex
Code | Label | | Mnemonics | | Comments | VII Daa | II d | | | | | | | All Res | ources Used | | | | | | | S. No. | Instrument /Components | | | Specification | | Quantity | | 1. | Components | | * | | | | | 2. | | | | | | | | | | | | | | | | XIII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | | | | | | |-------|--|--|--|--|--|--| XIV | Precautions Followed (use blank sheet provided if space not sufficient) | XV | Observations (use blank sheet provided if space not sufficient) | | | | | | | | LED will become (ON/OFF) after occurrence of (INT0/INT1) Interrupt | | | | | | | XVI | Result (Output of the Program) | XVII | Interpretation of Results (Give meaning of the above obtained results) | XVIII
 Conclusions and Recommendation | ## **XIX** Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO - 1. With a single instruction, show how to disable all the interrupts. - 2. List the interrupts of 8051 with vector address, port pin, flag affecting, priority level. | [Space for Answers] | |---------------------| Microcontroller & Appli | ication (22420) | | | |-------------------------|-----------------|-----------|-------| | | | | | | | |
 | | | | |
 | | | | | | | | | | | | | | |
 | ••••• | | | |
 | | | | | | | | | ••••• |
••••• | | # XIX References / Suggestions for further reading - 1. https://www.electronicshub.org > Free Project Circuits > Mini Projects - 2. https://www.elprocus.com/led-interfacing-with-8051-microcontroller/ - 3. https://www.engineersgarage.com/microcontroller/.../interface-leds-AT89C51-circuit ## XX Assessment Scheme | | Performance indicators | Weightage | |---|--|-----------| | | Process related(15 Marks) | 60% (15) | | 1 | Coding and Debugging ability | 30% | | 2 | Making connections of hardware | 20% | | 3 | Follow ethical practices. | 10% | | | Product related (10 Marks) | 40%(10) | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition. | 15% | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | TOTAL | 100% (25) | | Name of | Team | Members | |---------|------|----------------| |---------|------|----------------| | 1 |
 | |---|------| | 2 |
 | | 3 |
 | | 4 | | | Ma | Marks Obtained | | | | | |----------------------|-------------------------|------------|--|--|--| | Process Related (15) | Product
Related (10) | Total (25) | | | | # Practical No. 10: Develop an ALP to generate pulse and square wave by using Timer delay. #### I Practical Significance In 8051 timers are used to generate delays or as counters to count events happening outside the microcontroller. In time required applications two available 16 bit timers are operated in different modes to generate specific delay. This practical will help the students to develop skills to program timers and generate delays. ## II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ## III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate mode of timer for application. - Program two 16 bit timers/counters independently. - Generate required time delay. ## IV Relevant Course Outcome(s) • Interpret the program by using timer, interrupt and serial ports /parallel ports. #### V Practical Outcome • Develop an ALP to generate pulse and square wave by using Timer delay. #### VI Relevant Affective domain related Outcome(s) - Practice good housekeeping - Demonstrate working as a leader/a team member. - Follow ethical practices. #### VII Minimum Theoretical Background Four special function registers are connected with TIMER/COUNTER operation. TMOD - Timer Mode Register TCON - Timer Control Register TH0, TL0 - Timer/Counter - 0 TH1, TL1 - Timer/Counter – 1 Fig 10.1 Timer 0 #### Timer1: 16 bit **Fig 10.2 Timer 1** ## TMOD (timer mode) Register Fig 10.3 TMOD Register **Gate:** If bit is set Timer/counter is enable only while the INTx pin is high and the TRx control pin is set when cleared the timer is enabled whenever the TRx control bit is set **C/T':** Timer or counter selected. Cleared for timer operation(input from internal system clock) Set for counter operation(input from Tx input pin) #### M1 Mo: 0.0 - Mode 0.13 bit timer mode 01 – Mode 1-16 bit timer mode 10 – Mode 2 -8 bit auto reload 11 – Mode 3 –Split timer mode #### **Clock source for timer** Timer needs a clock pulse to tick. For the 8051 timers if C/T' = 0, the crystal frequency is attached to the 8051 is the source of the clock for timer. Timer's use 1/12 of XTAL frequency, regardless of machine cycle time Find the timer's clock frequency and its period for 8051; If XTAL frequency = 11.0592 MHz $1/12 \times 11.0592$ MHz = 921.6 kHz; T = 1/921.6 KHz = $1.085\mu s$ **TCON** (timer control) **Register:** The timers are started by using instructions to set timer Start bits TR0 and TR1, which are called timer run control bits. When timer counts to its maximum value, it sets a flag TF0 or TF1 Fig 10.4 TCON Register #### Timer Mode 1: Fig 10.5 Timer mode 1 diagram ## Timer delay calculation for mode 1 assuming XTAL = 11.0592 MHz $(FFFF - YYXX + 1) \times 1.085 \mu s$ Where YYXX are TH, TL initial values respectively. Notice that values YYXX are in hex. Example: The number of counts for the rollover is FFFFH-FFF2H = 0DH (13 decimal). However, we add one to 13 because of the extra clock needed when it rolls over from FFFF to 0 and raises the TF flag. this gives $14x1.085\mu s = 30.38 \mu s$ gives us the time delay generated by the timer ## VIII Practical Circuit diagram: a) Sample Circuit diagram Fig 10.6 8051 connection to CRO # b) Simulation diagram Fig 10.7 Simulation diagram c) Actual circuit used in laboratory ## IX Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------|---|----------| | 1. | Microcontroller
kit | Single board system with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2. | Desktop PC | Loaded with open source IDE, simulation and program downloading software. | 1 No. | | 3. | CRO | Bandwidth AC 10Hz ~ 20MHz (-3dB). DC ~ 20MHz (-3dB), X10 Probe | 1 No. | #### **X** Precautions to be followed 1. Check rules/syntax of assembly programming. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (Keil IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the program. - 7. Download hex code in EPROM/Flash memory of microcontroller. - 8. Connect CRO probe to port pin and observe waveform. - 9. Measure ON time and OFF time on CRO and draw the same in observation Table. # **SAMPLE PROGRAM 1**: To generate square wave by using Timer delay for count value FFF2H. ## Step 1: Algorithm - 1. Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is to be used and which timer mode(0 or 1) is selected. - 2. Load registers TL and TH with initial count values. - 3. Start the timer. - 4. Keep monitoring the timer flag (TF) with the "JNB TFx, target" instruction to see if it is raised. Get out of the loop when TF becomes high. - 5. Stop the timer. - 6. Clear the TF flag for the next round. - 7. Go back to Step 2 to load TH and TL again. # **Step 2: Flowchart** Fig 10.8 Flowchart for square wave **Step 3: Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|--------|----------------|--| | | | | ORG 0000h | | | C:0x0000 | 758901 | | MOV TMOD ,#01H | ;Timer 0, mode 1 | | C:0x0003 | 758AF2 | HERE: | MOV TL0,#0F2H | ;TL0=F2H | | C:0x0006 | 758CFF | | MOV TH0,#0FFH | ;TH0=FFH | | C:0x0009 | B295 | | CPL P1.5 | ;toggle P1.5 | | C:0x000B | 110F | | ACALL DELAY | | | C:0x000D | 80F4 | | SJMP HERE | ;load TH, TL again | | C:0x000F | D28C | DELAY: | SETB TR0 | ;start Timer 0 | | C:0x0011 | 308DFD | AGAIN: | JNB TF0,AGAIN | ;monitor Timer 0 overflow flag until it rolls over | | C:0x0014 | C28C | | CLR TR0 | ;stop Timer 0 | | C:0x0016 | C28D | | CLR TF0 | ;clear Timer 0 flag | | C:0x0018 | 22 | | RET | | | | | | END | | **Problem statement for student**: Develop assembly program to generate pulse width of 5ms on P2.3 using timer 0 mode1. Assume XTAL = 11.0592MHz | Step 1: Algorithm | Step 2: Flowchart | |-------------------|-------------------| ocontroller & | Application | (22426) | | | |-------------------|-------------|-------------|---------------|----------| age Program | ı | | | Memory
Address | Hex
Code | Label | Mnemonics | Comments | Resource | es Used | | | | | or. Ins | trument /C | Components | Specification | Quantity | XIII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | | | | |--------------
--|--|--|--| XIV | Precautions Followed (use blank sheet provided if space not sufficient) | XV | Observations for sample program (use blank sheet provided if space not sufficient) | | | | | 7 2 V | Draw Square wave and show TON and TOFF time | XVI | Result (Output of the Program) | XVII | Interpretation of Results (Give meaning of the above obtained results) | | | | | 12 / 11 | | | | | | | | | | | | | | | | | | XVIII Conclusions and Recommendation | |---| | | | | | | | XIX Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such | | questions so as to ensure the achievement of identified CO 1. Calculate the number to be loaded into TH, TL to generate square wave of ON time = | | 3ms and OFF time = 10ms use mode 1. Assume XTAL of 22MHz. | | 2. To get a 2 ms delay, what number should be loaded into TH, TL using mode 1. Assume XTAL= 11.0592MHz. | | [Space for Answers] | Microcontroller & Applica | ition (22426) | | | |---------------------------|---------------|------|--|
 | | | | | | | | | |
 | | ## XIX References / Suggestions for further reading - 1. http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/microcontrollers/micro/ui/Course_home2_8.htm - 2. http://www.circuitstoday.com/8051-timers-counters. - 3. The 8051 Microcontroller and Embedded system Using Assembly and C-Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson /Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030. #### XX Assessment Scheme | | Performance Indicators | Weightage | |---|--|-----------| | | Process related(15 Marks) | 60% | | 1 | Coding and Debugging ability | 30% | | 2 | Making connections of hardware | 20% | | 3 | Follow ethical practices. | 10% | | | Product related (10 Marks) | 40% | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition. | 15% | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | Total (25 Marks) | 100% | | Tidille of Tealit Hiteliteers | Name | of | 7 | <i>'eam</i> | M | <i>lembers</i> | |-------------------------------|------|----|---|-------------|---|----------------| |-------------------------------|------|----|---|-------------|---|----------------| | 1 | | |---|--| | 2 | | | 3 | | | 4 | | | M | arks Obtained | | Dated signature of Teacher | |----------------------|-------------------------|-------------------|----------------------------| | Process Related (15) | Product
Related (10) | Total (25) | | | | | | | # Practical No. 11: Interface 4 X 4 LED matrix with 8051 to display various pattern. ## I Practical Significance LED matrix displays are used as stadium displays, decorative displays and as visual signals to human eye, to convey a message or meaning .LED matrix displays are interfaced with microcontroller I/O port to display characters and different patterns. This practical will help the students to develop skills to interface 4 X 4 LED matrix display to microcontroller and display various pattern. ## II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ## III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of LED grid for given application. - Interface 4x4 LED matrix display to the microcontroller. - Generate different patterns on LED matrix. ## IV Relevant Course Outcome(s). • Interface the memory and I/O devices to 8051 microcontroller. #### V Practical Outcome • Interface 4 X 4 LED matrix with 8051 to display various pattern. #### VI Relevant Affective domain related Outcome(s) - Practice good housekeeping. - Demonstrate working as a leader/a team member. - Follow ethical practices. #### VII Minimum Theoretical Background In LED dot matrix display the LEDs are connected at the column and row intersections of the matrix. LEDs in the same row are connected together and LEDs in the column are connected together. Transistors are act as switches and used to control LEDs in the matrix. #### LED (Light Emitting Diode) - Specifications: LED - 1. Current: 20 mA - Voltage drop: 1.9 to 2.1 V Power dissipation: 40 mW - 4. Color: RED - **Operation:** Voltage +5V to anode with respect to cathode ground LED will turn ON. Fig 11.1 LED symbol and construction Accessing individual LEDs: You turn on an individual LED by setting its row and column pins to the proper logic 1. For example, referring to figure 11.2 LED matrix the switch in column 2 is closed which ties the anodes of all of the LEDs in that column to positive voltage and on the left the switch in row 1 is closed causing a ground level to be applied to the cathode of all of the LEDs in that row. The LED at the intersection of column 2 and row 1 is forward biased and turns on. Fig 11.2 Addressing individual LED: 2nd column and 1st row Fig 11.3 LED ON logic through transistor Fig 11.4 LED OFF logic through transistor ## VIII Practical Circuit diagram: # a) Sample circuit diagram Fig 11.5 8051 connection to 4x4 LED matrix display # b) Simulation diagram Fig 11.6 Simulation diagram c) Actual circuit used in laboratory # IX Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|---|----------| | 1 | Microcontroller
kit | Single board system with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2 | Desktop PC | Loaded with open source IDE, simulation and program downloading software. | 1 No. | | 3 | 4 X4 LED matrix | Suitable to interface with 8051 trainer kit | 1 No | ## **X** Precautions to be Followed 1. Always use driver circuit to interface LED matrix to microcontroller. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (Keil IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Simulate program on IDE. - 6. Create hex file for the program. - 7. Download hex code in EPROM/Flash memory of the microcontroller. - 8. Interface4 X 4 LED matrix to 8051. - 9. Observe different patterns on 4x4 LED matrix # **SAMPLE PROGRAM 1**: Write program to display various patterns on 4x4 LED matrix. ## Step 1: Algorithm - 1. Make port P2 used to interface 4x4 LED matrix as an output port. - 2. Send F1H value to the port to turn ON first column all LED. - 3. Add delay. - 4. Send 1FH value to the port to display first row all LED. - 5. Add delay. - 6. Send 11H value to the port to display first column first row LED. - 7. Add delay. - 8. Send 88H value to the port to display fourth column fourth row LED. - 9. Add delay. - 10. For repeat operation go to step 2. ## **Step 2: Flowchart** Fig. 11.2 Flowchart for 4x4 LED matrix **Step 3: Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|--------|---------------|---------------------------| | | | | ORG 0000H | | | C:0x0000 | 75A000 | | MOV P2,#00H | ;make port as output | | C:0x0003 | 75A0F1 | | MOV P2,#0F1H | ;send value to LED matrix | | C:0x0006 | 1119 | RPT: | ACALL DELAY | ;add delay | | C:0x0008 | 75A01F | | MOV P2,#1FH | ;send value to LED matrix | | C:0x000B | 1119 | | ACALL DELAY | ;add delay | | C:0x000D | 75A011 | | MOV P2,#11H | ;send value to LED matrix | | C:0x0010 | 1119 | | ACALL DELAY | ;add delay | | C:0x0012 | 75A088 | | MOV P2,#88H | ;send value to LED matrix | | C:0x0015 | 1119 | | ACALL DELAY | ;add delay | | C:0x0017 | 80EA | | SJMP RPT | | | C:0x0019 | 7A0A | | MOV R2,#10 | ;delay subroutine | | C:0x001B | 7B64 | DELAY: | MOV R3,#100 | | | C:0x001D | 7CC8 | HERE2: | MOV R4,#200 | | | C:0x001F | DCFE | HERE1: | DJNZ R4,HERE | | | C:0x0021 | BDFA | HERE: | DJNZ R3,HERE1 | | | C:0x0023 | DAF6 | | DJNZ R2,HERE2 | | | C:0x0025 | 22 | | RET | | | | | | END | | **Problem statement** for student: Develop assembly program to turn ON and OFF all LEDs connected to port 1 with some delay. | Step 1: Algorithm | Step 2-Flowchart | |-------------------|------------------| |
Step 3- Ass | embly Langu | age Pro | gram Code | | |-------------|-------------|------------|-------------|-------------|---------|---------------------|----------| | Mem
Addr | ory | Hex Cod | e Label | Mnemo | nics | Cor | nments | II | Rese | ources Use | ed | | | | | | II | | ources Use | | Cource | Sr | nocification | Quantity | | II | Sr | . No. | Name of Res | source. | Sp | oecification | Quantity | | II | | . No. | | source. | Sp | oecification | Quantity | | II | Sr. | . No. | | source. | Sp | oecification | Quantity | | | 1
2
3 | . No. | Name of Res | | | | | | | 1
2
3 | . No. | Name of Res | | | ded if space not su | | | | 1
2
3 | . No. | Name of Res | | | | | | | 1
2
3 | . No. | Name of Res | | | | | | | 1
2
3 | . No. | Name of Res | | | | | | | 1
2
3 | . No. | Name of Res | | | | | | TIII | 1
2
3 | . No. | Name of Res | | | | | | | 1
2
3 | . No. | Name of Res | | | | | | Observations for sample p | orogram (use blank sheet provid | ded if space not suffici | |-----------------------------|---------------------------------|--------------------------| | | LED stat | us (ON/OFF) | | HEX Value | Column | Row | | F1H | | | | 1FH | | | | 11H | | | | 88H | | | | Interpretation of Results (| Give meaning of the above obta | nined results) | | Interpretation of Results (| Give meaning of the above obta | nined results) | | | Give meaning of the above obta | | | Conclusions and Recom | | | | Conclusions and Recom | | | | Conclusions and Recom | | | Microcontroller & Application (22426) | Microcontroller & Application (22426) | |---------------------------------------| Micro | controller & Application (22426) | |-------|--| ••••• | | | XX | References / Suggestions for further reading | | | 1. https://www.youtube.com/watch?v=-1UPPHjR0vk | | | 2. https://www.youtube.com/watch?v=MmCGDJ90Ot4 | - 3. https://www.youtube.com/watch?v=lZyc6ulpkyM # XXI Assessment Scheme | | Performance indicators | Weightage | |---|--|-----------| | | Process related(15 Marks) | 60% (15) | | 1 | Coding and Debugging ability | 30% | | 2 | Making connections of hardware | 20% | | 3 | Follow ethical practices. | 10% | | | 40%(10) | | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition. | 15% | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | TOTAL | 100% (25) | | Name of Team Members | | | | |----------------------|--|--|--| | 1 | | | | | 2 | | | | | 3 | | | | | 4 | | | | | Mai | Dated signature of
Teacher | | | |-------------------------|-------------------------------|-------------------|--| | Process
Related (15) | Product
Related
(10) | Total (25) | | | | | | | # Practical No. 12: Interface 7-segment display to display the decimal number from 0 to 9. ## I Practical Significance In electronic displays like pricing menu at petrol pump, in metros, digital clocks and in many electronics appliances most commonly used display device is a 7-segment display (SSD). Seven segment displays are used to display decimal numbers from 0 to 9 and in some cases, basic characters also. This practical will help the students to develop skills to interface 7-segment display to microcontroller and display number from 0 to 9. ## II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ## III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of 7- segment display for given application. - Interface 7-segment display to the microcontroller in static or multiplexed mode. - Display numbers and characters on 7 segment display. #### IV Relevant Course Outcome(s) • Interface the memory and I/O devices to 8051 microcontroller. #### V Practical Outcome • Interface 7-segment display to display the decimal number from 0 to 9. ## VI Relevant Affective domain related Outcome(s) - Follow safe practices - Maintain tools and equipment. - Follow ethical practices #### VII Minimum Theoretical Background 7-segment display may use a light-emitting diode (LED) for each segment, or other light-generating or controlling techniques such as cold cathode gas discharge, vacuum fluorescent, incandescent filaments, and other. Types of LED based 7-segment display are i) Common Cathode Display ii) Common Anode. Display Fig 12.1 Seven segment display and pin configuration Fig 12.2 CA 7-segment display constructional diagram # Specifications: 7-segment display - Part No: LDS-A516RI - Digit/Alpha: Size:0.56" RED - Voltage drop across per LED:2.2V - Max current per LED: 10mA~20mA - Peak wavelength:660nm LED segment is ON for logic '0' (Ground) and OFF for logic '1' (+5V). **Table 12.1 CA type SSD Operation** | | P1.7 | P1.6 | P1.5 | P1.4 | P1.3 | P1.2 | P1.1 | P1.0 | | |-------|------|------|------|------|------|------|------|------|----------| | Digit | DP | G | F | E | D | C | В | A | Hex code | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0C0 H | | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0F9 H | | 2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0A4 H | | 3 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0B0 H | | 4 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 99 H | | 5 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 92 H | | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 82 H | | 7 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0F8 H | | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 H | | 9 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 90 H | Fig 12.3 Seven segment display number patterns ## VIII Practical Circuit diagram: ## a) Sample Circuit diagram Fig 12.4 8051 connection to CA seven segment display # b) Practical Setup Fig 12.5 Practical setup ## c) Simulation diagram Fig 12.6 Simulation diagram ## d) Actual circuit used in Laboratory # e) Actual Experimental set up used in laboratory # IX Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------|--|----------| | 1. | Microcontroller | Single board system with 8K RAM,ROM memory with | 1 No. | | | kit | battery backup,16X4,16X2LCD display, PC keyboard | | | | | interfacing facility, Hex keypad facility, single user | | | | | cross c-compiler,RS-232,USB, interfacing facility with | | | | | built in power supply. | | | 2. | Desktop PC | Loaded with open source IDE, simulation and program | 1 No. | | | | downloading software. | | | 3. | 7-segment LED | 0.56 in 1-digit Red, common anode/common cathode | 1No. | | | Display | display. | | #### **X** Precautions to be followed - 1. Use always current limiting resistor before interfacing 7-segment display to microcontroller. - 2. For safe operation use seven segment displays at 25° temperature. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart. - 3. Develop assembly program using Integrated Development Environment (Keil IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file. - 7. Download hex code in EPROM/Flash memory of microcontroller. - 8. Interface CA type 7 segment display to microcontroller as per circuit diagram shown in fig 12.4. - 9. Observe and draw the display of numbers on 7-seven segment display. - 10. Record the hex value in observation table. ## **SAMPLE PROGRAM 1**: Write a program to display decimal no 0 to 9. ## Step 1: Algorithm - 1. Make the Port P1 used to Interface 7-segment display as an output port. - 2. Set counter register R2 = 10 for 0 to 9 digits. - 3. Load DPTR with memory address where table is stored. - 4. Clear Accumulator. - 5. Read stored hex code of decimal digit from memory into Accumulator. - 6. Send code to output port where 7-segment display is connected. - 7. Increment memory pointer i.e. DPTR. - 8. Decrement the counter register R2 and compare with 0 is counter =0? NO- go to step 4 to send next digit code. - 9. For repeat operation go to step 2. - 10. Stop ## **Step 2: Flowchart** Fig 12.7 Flowchart to display decimal no 0 to 9 **Step 3: Assembly Language Program** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|---------|-----------------|--| | | | | ORG 0000H | | | C:0x0000 | 759000 | | MOV P1,#00H | ;Make port as output port | | C:0x0003 | 7A0A | REPEAT: | MOV R2,#10 | ;Set register as counter of 10 bytes | | C:0x0005 | 900200 | | MOV DPTR,#TABLE | ;Load address of memory into
Data pointer | | C:0x0008 | E4 | UP: | CLR A | ;Clear accumulator | | C:0x0009 | 93 | | MOVC A,@A+DPTR | ;Read hex code from memory into accumulator | | C:0x000A | F590 | | MOV P1,A | ;Send hex code to port | | C:0x000C | 1113 | | ACALL DELAY | | |----------|------|--------|---|--| | C:0x000E | A3 | | INC DPTR | ;Increment memory pointer to read next digit hex code | | C:0x000F | DAF7 | | DJNZ R2,UP | ; Decrement
counter & jump if not equal to zero to label UP. | | C:0x0011 | 80F0 | | SJMP REPEAT | ;Repeat loop | | C:0x0013 | 7B19 | DELAY: | MOV R3,#25 | ;Delay Subroutine | | C:0x0015 | 7C64 | L3: | MOV R4,#100 | | | C:0x0017 | 7D64 | L2: | MOV R5,#100 | | | C:0x0019 | DDFE | L1: | DJNZ R5,L1 | | | C:0x001B | DCFA | | DJNZ R4,L2 | | | C:0x001D | DBF6 | | DJNZ R3,L3 | | | C:0x001F | 22 | | RET | | | | | | ORG 0200H | | | | | TABLE: | DB 0C0H, 0F9H,
0A4H, 0B0H, 99H,
92H, 82H, 0F8H, 80H,
90H | ;Decimal 0 to 9 hex code stored at code memory starting at location 0200H onward | | | | | END | | $\begin{tabular}{ll} \textbf{Problem statement for student}: Develop assembly program to display Alphabets A, B, C, D, E and F on Common Anode 7-segment display \\ \end{tabular}$ | Step 1: Algorithm | Step 2: Flowchart | |-------------------|-------------------| Microcontroller & Application (22426) | | | | | |---------------------------------------|--|--|--|--| **Step 3- Assembly Language Program** | Memory | Hex | Label | - Assembly Language Pi Mnemonics | Comments | |---------|------|-------|----------------------------------|----------| | Address | Code | ## XII Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | XIII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | |------|--| XIV | Precautions Followed (use blank sheet provided if space not sufficient) | | | | | | | | | | | | | # XV Observations for sample program (use blank sheet provided if space not sufficient) | Sr. NO. | Memory Location | Hex Value | |---------|-----------------|-----------| | 1 | C:0x0200 | | | 2 | C:0x0201 | | | 3 | C:0x0202 | | | 4 | C:0x0203 | | | 5 | C:0x0204 | | | 6 | C:0x0205 | | | 7 | C:0x0206 | | | 8 | C:0x0207 | | | 9 | C:0x0208 | | | 10 | C:0x0209 | | | XVI | Result (Output of the Program) | | | | |-------|--|--|--|--| | | | | | | | XVII | Interpretation of Results (Give meaning of the above obtained results) | | | | | | | | | | | XVIII | Conclusions and Recommendation | | | | | | | | | | | | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO. List the numbers for CC type display in which segment 'a' is activated. Write Steps for testing seven segment displays. Write and execute a program to display continuously '0 to 9' if switch is pressed else '9 to 0' on 7 segment display | | | | | | [Space for Answers] | Microcontroller & Application (22426) | | |---------------------------------------|-----------| | | | | | ••• | | |
••• | | |
 | | |
 | | | | | | ••• | | |
• • • | | |
 | | |
 | | | | | | ••• | | |
 | | |
• • • | | |
 | | | | | | ••• | | |
• • • | | |
••• | | |
 | | | | | | ••• | | | ••• | | | ••• | | |
 | | | | | | | | | ••• | | | | | | | | |
 | | | | | | ••• | | | ••• | | |
 | | |
 | | | | | | ••• | | |
 | | |
 | | |
 | | | | | | ••• | | Aicrocontroller & Application (22426) | |---------------------------------------| | | | | | | | | | | | | | | | | ## XX References / Suggestions for further reading - 1. https://en.wikipedia.org/wiki/Seven-segment_display - 2. https://pdf1.alldatasheet.com/datasheet-pdf/view/162375/ETC1/LDS-A516RI.html. - 3. https://www.youtube.com/watch?v=1elRGva9bNg. #### XXI Assessment Scheme | | Performance Indicators | | | | | | |---|--|-----|--|--|--|--| | | Process related(15 Marks) | 60% | | | | | | 1 | Coding and Debugging ability | 30% | | | | | | 2 | Making connections of hardware | 20% | | | | | | 3 | Follow ethical practices. | 10% | | | | | | | Product related (10 Marks) | 40% | | | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | | | | 5 | Relevance of output of the problem definition. | 15% | | | | | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | | | | | Total (25 Marks) | | | | | | ## Name of Team Members | 1 | | |---|--| | 2 | | | 3 | | | | | . | I | Dated signature of Teacher | | | |----------------------------|----------------------------|---------------|--| | Process
Related
(15) | Product
Related
(10) | Total
(25) | | | | | | | #### Practical No. 13: Interface relay with microcontroller and turn it ON and OFF #### I Practical Significance In Industrial applications low power devices microcontrollers drive relays are use to control electrical loads beyond their direct drive capability. Relays are used wherever it is necessary to control a high power or high voltage circuit with a low power circuit, especially when galvanic isolation is desirable. Electromechanical protective relays are used to detect overload and other faults on electrical lines by opening and closing circuit breakers. This practical will help the students to develop skills to interface relay to microcontroller and turn it ON and OFF. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of relay for given application. - Interface relay to the microcontroller. - Use relay to switch on and off electrical loads. #### IV Relevant Course Outcome(s) • Interface the memory and I/O devices to 8051 microcontroller. #### V Practical Outcome • Interface relay with microcontroller and turn it ON and OFF. #### VI Relevant Affective domain related Outcome(s) - Follow safe practices. - Demonstrate working as a leader/a team member - Maintain tools and equipment.. #### VII Minimum Theoretical Background When an electric current is passed through the coil it generates a magnetic field that activates the armature and the consequent movement of the movable contact either makes or breaks (depending upon construction) a connection with a fixed contact. Fig 13.1 Simple electromechanical relay ## **Specifications: SPDT Relay** Voltage: 12V to 15VCoil resistance: 400 ohm • Current: 30mA Fig 13.2 Contact forms Fig 13.3 Form C SPDT Relay ## VIII Practical Circuit diagram: a) Sample circuit diagram Fig 13.4 8051 connection to Relay b) Practical setup Fig 13.5 Practical Setup #### c) Simulation diagram Fig 13.6 Simulation diagram | d) Actual circuit used in Labor | ratory | |---------------------------------|--------| e) Actual Experimental set up used in laboratory #### XI Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------|--|----------| | 1. | Microcontroller kit | Single board systems with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2. | Desktop PC | Loaded with open source IDE, simulation & program downloading software | 1 No. | | 3. | Relay trainer board | Suitable to interface with 8051 trainer kit | 1 No. | #### **X** Precautions to be Followed - 1. Use always driver circuit before interfacing relay to the microcontroller. - 2. Use fly back diode to avoid voltage spikes. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the above program. - 7. Download hex code in EPROM/Flash memory of microcontroller. - 8. Interface relay to the microcontroller as per circuit diagram shown in Fig 13.4. - 9. Observe the relay operation by connecting electrical load and note it in observation Table
13.3 #### **SAMPLE PROGRAM 1**: Write a program to turn ON/OFF relay. #### **Step 1-Algorithm** - 1. Make the Port pin P2.0 used to Interface relay as an output pin. - 2. Turn on relay by setting port bit. - 3. Add delay - 4. Turn off relay by clearing bit - 5. Add delay - 6. For repeat operation go to step 2 - 7. Stop ## **Step 2-Flow Chart** Fig 13.7 Flowchart to turn ON and OFF relay **Step 3- Assembly Language Sample Program** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|--------|-------------|-------------------| | | | | ORG 0000H | | | C:0x0000 | D2A0 | MAIN: | SETB P2.0 | ;relay on | | C:0x0002 | 110A | | ACALL DELAY | | | C:0x0004 | C2A0 | | CLR P2.0 | ;relay off | | C:0x0006 | 110A | | ACALL DELAY | | | C:0x0008 | 80F6 | | SJMP MAIN | | | C:0x000A | 7B64 | DELAY: | MOV R3,#100 | ;Delay Subroutine | | C:0x000C | 7CFF | L3: | MOV R4,#255 | | | C:0x000E | 7DFF | L2: | MOV R5,#255 | | | C:0x0010 | DDFE | L1: | DJNZ R5,L1 | | | C:0x0012 | DCFA | | DJNZ R4,L2 | | | C:0x0014 | DBF6 | | DJNZ R3,L3 | | | C:0x0016 | 22 | | RET | | | | | | END | | **Problem statement for student:** Develop assembly program to turn ON and OFF relay for 10 times. | Step 1-Algorithm | Step 2-Flowchart | |------------------|------------------| **Step 3- Assembly Language Program** | Memory
Address H | ex Code | Label | Mnemonics | Comments | |---------------------|---------|-------|-----------|----------| ļ | İ | 1 | | ## XII Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | Obs | ervations for | sample pro | o gram (use | blank sheet j | provided if sp | pace not si | ufficient) | |-----|---------------|--------------------|---|---------------|----------------|-------------|------------| | | | | | | | | | | Pr | ecautions Fo | llowed (use | blank shee | - | space not suf | fficient) | • | | | | | | | | | | | | | | | Sr. NO. | Step | Port Pin Status | Logic 1 (+5V) / Logic 0
(0V) | Relay Status
ON/OFF | |---------|--------|-----------------|---------------------------------|------------------------| | 1 | Step 1 | P2.0 | | | | 2 | Step 2 | P2.0 | | | | XVI | VI Results (Output of the Program) | | | | | |-----|------------------------------------|--|--|--|--| Microcontroller & Application (22426) | |---------------------------------------| #### XIX References / Suggestions for further reading - 1. https://en.wikipedia.org/wiki/Relay - 2. http://www.circuitstoday.com/how-to-test-a-relay - 3. The 8051 Microcontroller and Embedded system Using Assembly and C-Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson /Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030 #### **XX** Assessment Scheme | | Performance Indicators | | | | | | |---|--|-----|--|--|--|--| | | Process related(15 Marks) | | | | | | | 1 | Coding and Debugging ability | 30% | | | | | | 2 | Making connections of hardware | 20% | | | | | | 3 | 3 Follow ethical practices. | | | | | | | | Product related (10 Marks) | | | | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | | | | 5 | Relevance of output of the problem definition. | 15% | | | | | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | | | | | Total (25 Marks) | | | | | | | Name of Team N | Members | |----------------|---------| |----------------|---------| | 1 | | |---|--| | 2 | | | | | | | | | | Marks Obtained | Dated signature of Teacher | | |-----------------------------------|----------------|----------------------------|--| | Process Product Related (10) (15) | | Total (25) | | | | | | | ## Practical No. 14: Interface LCD with 8051 microcontroller to display the characters and decimal numbers #### I Practical Significance LCDs are used in a wide range of applications including Computers, televisions, instrument panels, calculator's displays. They are common in consumer devices and have replaced cathode ray tube (CRT) displays in most applications. LCDs are interfaced with microcontrollers to display the given integer and character. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry. #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of LCD for given application. - Interface LCD display to microcontroller in 4 bit and 8 bit mode. - Display given integer and character on LCD. #### IV Relevant Course Outcome(s) • Interface the memory and I/O devices to 8051 microcontroller. #### V Practical Outcome • Interface LCD with 8051 microcontroller to display the characters and decimal numbers. #### VI Relevant Affective domain related Outcome(s) - Follow good housekeeping. - Maintain tools and equipment. - Follow ethical practices. #### VII Minimum Theoretical Background A liquid-crystal display (LCD) is a flat panel display that uses the light modulating properties of liquid crystals. Liquid crystals do not emit light directly. An LCD is of two types depending upon how they made with either a passive matrix or an active matrix display grid. Fig. 14.1 Block Diagram of LCD display # Specifications:16 x2 LCD display • Part No: JHD162A Char Dots: 5 x 8Number of data line: 8 bit parallel • Driving Mode: 1/16 duty,1/5 bias Available Types: TN, STN (Yellow, Green, Grey, B/W) **Table 14.1 Operating parameters – Pin description of LCD module** | Pin
No | Function | Name | Pin
No | Function | Name | |-----------|---|-----------------------------|-----------|--------------------------------|-----------| | 1 | Ground (0V) | Ground | 9 | 8-bit data pins | DB2 | | 2 | Supply voltage; 5V (4.7V – 5.3V) | Vcc | 10 | 8-bit data pins | DB3 | | 3 | Contrast adjustment; through POT | $V_{\scriptscriptstyle EE}$ | 11 | 8-bit data pins | DB4 | | 4 | Selects command register | Register
Select(RS) | 12 | 8-bit data pins | DB5 | | 5 | Selects data register | Read/write(RW) | 13 | 8-bit data pins | DB6 | | 6 | Sends data to data pins when a high to low pulse is given | Enable(E) | 14 | 8-bit data pins | DB7 | | 7 | 8-bit data pins | DB0 | 15 | Backlight V _{cc} (5V) | LED+ | | 8 | 8-bit data pins | DB1 | 16 | Backlight Ground (0V) | LED-(GND) | Fig. 14.2 Types of LCD Basic unit of display is pixel and PIXEL= picture + element. Fig 14.3 shows that each LCD have its own pixel rows and columns like 1×16 has single row and sixteen columns i.e. 16 pixel and each pixel size is of 5×8 as shown but we can see only 5×7 cause last raw is used by cursor. Each character is display according to these pixels size Table 14.2 LCD control lines and function | Rs -> Register select | RW -> Read/Write | EN -> Enable | | |-----------------------|---|---|--| | | RW=1 -reading from LCD. RW=0 -writing to LCD. | EN= high to low (Logic '1' delay Logic '0') for use LCD module. | | **Table 14.3 LCD commands** | Code (Hex) | Command to LCD Instruction Register | |------------|--| | 1 | Clear display screen | | 2 | Return home | | 4 | Decrement cursor (shift cursor to left) | | 6 | Increment cursor (shift cursor to right) | | 5 | Shift display right | | 7 | Shift display left | | 8 | Display off, cursor off | | Α | Display off, cursor on | | С | Display on, cursor off | | E | Display on, cursor blinking | | F | Display on, cursor blinking | | 10 | Shift cursor position to left | | 14 | Shift cursor position to right | | 18 | Shift the entire display to the left | | iC | Shift the entire display to the right | | 80 | Force cursor to beginning to 1st line | | CO | Force cursor to beginning to 2nd line | | 38 | 2 lines and 5x7 matrix | ## a) Practical Circuit diagram: Sample circuit diagram Fig 14.4 8051 connection to 16x2 LCD display ### a) Practical setup Fig 14.5 Practical Setup #### b) Simulation diagram Fig 14.6 Simulation diagram c) Actual circuit used in Laboratory d) Actual Experimental set up used in laboratory ## XI Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------
--|----------| | 1. | Microcontroller kit | Single board systems with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2. | Desktop PC | Loaded with open source IDE, simulation & program downloading software | 1 No. | | 3. | LCD Trainer board | Suitable to interface with 8051 trainer kit | 1 | ### **X** Precautions to be Followed - 1. LCD panel is made up of glass avoid applying strong pressure on to the surface of display area. - 2. Ensure proper connection then only give electric supply to circuit. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the above program. - 7. Interface LCD display to microcontroller as per circuit diagram shown in Fig 14.4 - 8. Download hex code in EPROM/Flash memory of microcontroller - 9. Observe output on LCD display and note it in observation Table 14.3 #### **SAMPLE PROGRAM 1**: Write a program to display "uC AT89c51" on LCD. #### **Step 1-Algorithm** - 1. Define control signals RS, RW and EN for LCD - 2. Make LCD connected port as an output port. - 3. Initialize LCD by sending commands. - 4. Load DPTR with program memory address. - 5. Set register as counter R2 = 10 (decimal) for to display "uC AT89c51" - 6. Clear Accumulator - 7. Read ASCII from code memory into Accumulator. - 8. Send code to output port where LCD is connected. - 9. Increment memory pointer. - 10. Decrement R2 counter. Is count =0? NO- go to step 6. - 11. For repeat operation go to step 4. - 12. Stop #### **Step 2-Flow Chart** Fig 14.7 Flowchart to display alphabets and decimal numbers on LCD **Step 3- Assembly Language Sample Program** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-----------|-------------------|---| | | | | RS BIT P3.3 | ;Replace a bit address by a symbol | | | | | RW BIT P3.4 | | | | | | EN BIT P3.5 | | | | | | ORG 0000H | | | C:0x0000 | 759000 | | MOV P1, #00H | ;Set P1 as o/p port where
LCD is connected | | C:0x0003 | 120015 | | LCALL LCD_INIT | ;Call LCD initialize subroutine | | C:0x0006 | 900050 | | MOV DPTR, #MSG | ; Load program memory address into DPTR | | C:0x0009 | 7A0A | | MOV R2, #10 | ;Set counter of 10 | | C:0x000B | E4 | DISP_MSG: | CLR A | | | C:0x000C | 93 | | MOVC A,@A+DPTR | ;Read data from memory into A register | | C:0x000D | 120037 | | LCALL LCDDATA | | | C:0x0010 | A3 | | INC DPTR | ;Increment pointer to next location | | C:0x0011 | DFF8 | | DJNZ R7, DISP_MSG | ;Repeat loop for 10 times | | C:0x0013 | 80FE | | SJMP \$ | | | C:0x0015 | 7438 | LCD_INIT: | MOV A, #38h | ; 2 lines and 5×7 matrix (8-bit mode) | | C:0x0017 | 112A | | ACALL LCDCMD | | | C:0x0019 | 740E | | MOV A, #0eh | ; Display on, cursor on | | C:0x001B | 112A | | ACALL LCDCMD | | | C:0x001D | 7406 | | MOV A, #06h | ; Increment cursor (shift cursor to right) | | C:0x001F | 112A | | ACALL LCDCMD | | | C:0x0021 | 7401 | | MOV A, #01h | ; Clear display screen | | C:0x0023 | 112A | | ACALL LCDCMD | | | C:0x0025 | 7480 | | MOV A, #80H | ; Force cursor to beginning to 1st line | | C:0x0027 | 112A | | ACALL LCDCMD | | | C:0x0029 | 22 | | RET | | | C:0x002A | F590 | LCDCMD: | MOV P1,A | ;Send command to lcd | | C:0x002C | C2B3 | | CLR RS | ;Select command register | | C:0x002E | C2 B4 | | CLR RW | ;Select write operation | | C:0x0030 | D2B5 | | SETB EN | - | | C:0x0032 | C2B5 | | CLR EN | ;Latch command to lcd | | C:0x0034 | 1144 | | ACALL DELAY | ;Wait for sometime | |----------|-------|----------|-----------------|----------------------------------| | C:0x0036 | 22 | | RET | | | C:0x0037 | F590 | LCDDATA: | MOV P1,A | ;Send data to lcd | | C:0x0039 | D2 B3 | | SETB RS | ;Select data register | | C:0x003B | C2 B4 | | CLR RW | ;Select write operation | | C:0x003D | D2B5 | | SETB EN | | | C:0x003F | C2B5 | | CLR EN | ;Latch data to lcd | | C:0x0041 | 1144 | | ACALL DELAY | ;Wait for sometime | | C:0x0043 | 22 | | RET | | | C:0x0044 | 7B32 | DELAY: | MOV R3,#50 | ;Delay subroutine | | C:0x0046 | 7CFF | LOOP2: | MOV R4,#255 | | | C:0x0048 | DCFE | LOOP1: | DJNZ R4,LOOP1 | | | C:0x004A | DBFA | | DJNZ R3,LOOP2 | | | C:0x004C | 22 | | RET | | | | | | ORG 0050H | | | | | MSG: | DB "uC AT89c51" | ;Define data byte to code memory | | | | | END | | **Problem statement for student:** Develop assembly program to display data "Wel" on 1^{st} line and "Come" on 2^{nd} line of LCD | Step 1-Algorithm | Step 2-Flowchart | |------------------|------------------| Microcontroller & Application (22426) | | |---------------------------------------|--| **Step 3- Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|-------|-----------|----------| ## XII Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | XIII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | |------|--| XIV | Precautions Followed (use blank sheet provided if space not sufficient) | | | | | | | | | | | | | | | | ## XV Observations for sample program (use blank sheet provided if space not sufficient) | Sr. No. | LCD Memory | Observed Alphabet | |---------|------------|--------------------| | | Location | and decimal number | | | | | | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | 10 | | | | XVI | Results (Output of the Program) | | | | |-------|---|--|--|--| | | | | | | | | | | | | | XVII | Interpretation of Results (Give meaning of the above obtained results) | | | | | AVII | interpretation of Results (Give meaning of the above obtained results) | | | | | | | | | | | | | | | | | vviii | Conclusions and Recommendation | | | | | AVIII | | | | | | | | | | | | XIX | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO Write down cost of LCD module for at least 3 different Manufacturer with specifications. State possible reasons of 16x2 LCD display not working. Write assembly program for checking busy flag in LCD display. | | | | | | 4. Write appropriate command to shift entire data to right. | | | | | | [Space for Answers] | Microcontroller & Application (22426) | | |---------------------------------------|-------| | | | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | herocontroller & Application (22420) | |--------------------------------------| #### XIX References / Suggestions for further reading - 1. https://en.wikipedia.org/wiki/Liquid-crystal_display. - 2. https://pdf1.alldatasheet.com/datasheet-pdf/view/127934/ETC1/JHD162A.html - 3. The 8051 Microcontroller and Embedded system Using Assembly and C-Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson /Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030 #### XX Assessment Scheme | | Performance indicators | Weightage | |---|--|-----------| | | Process related(15 Marks) | 60% | | 1 | Coding and Debugging ability | 30% | | 2 | Making connections of hardware | 20% | | 3 | Follow ethical practices. | 10% | | | Product related (10 Marks) | 40% | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition. | 15% | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | Total (25 Marks) | 100% | ## Name of Team Members | 1 | | |---|--| | 2 | | | 3 | | | 4 | | | Marks Obtained | | | Dated
signature of
Teacher | |----------------------|----------------------------|------------|----------------------------------| | Process Related (15) | Product
Related
(10) | Total (25) | | | | | | | ## Practical No. 15: Interface the given keyboard with 8051 and display the key pressed. #### I Practical
Significance The predominant interface between humans and hardware is the keyboard in almost in all electronic applications. The matrix keypad allows a designer to implement a large number of inputs with a small number of microcontroller port pins. These keypads were evolved originally for telephonic applications involving touch tone signaling. This practical will help the students to develop skills to interface given keyboard to the microcontroller and display key pressed. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of matrix keypad for application. - Interface matrix keypad to the microcontroller. - Provide input data through keypad to the system. #### IV Relevant Course Outcome(s) • Interface the memory and I/O devices to 8051 microcontroller. #### V Practical Outcome • Interface the given keyboard with 8051 and display the key pressed. #### VI Relevant Affective domain related Outcome(s) - Follow safe practices. - Follow ethical practices. - Demonstrate working as a leader/a team member #### VII Minimum Theoretical Background Fig 15.1 Keypad Types 4 x 4 matrix keypad connected to a single port of microcontroller. The keypad columns and rows are connected to the port pins. The keypad can be decoded to find out which key was pressed. When a key is pressed on the keypad, a row and column make a contact; otherwise, there is no connection #### **Specifications: Keypad** - Maximum voltage across each key: 24V - Maximum Current through each key: 30mA - Maximum operating temperature: 0°C to + 50°C - Easy interface - Long life Table 15.1 4x4 Keypad: - Rows (R1, R2, R3, R4) Columns (C1, C2, C3, C4) (Refer Fig.15.2) | Step1:- Make R1- 0 Checks C1, C2, C3,C4 | Step3:- Make R3- 0 Checks C1, C2, C3,C4 | | |---|---|--| | If $C1=0-'0'$ is pressed | If $C1=0$ – '8' is pressed | | | If C2=0 – '1' is pressed | If $C2=0-'9'$ is pressed | | | If C3=0 – '2' is pressed | If C3=0 – 'A' is pressed | | | If C3=0 – '3' is pressed | If C3=0 – 'B' is pressed | | | | | | | Step2:- Make R2- 0 Checks C1, C2, C3,C4 | Step4:- Make R4- 0 Checks C1, C2, C3,C4 | | | If C1=0 – '4' is pressed | If $C1=0$ – 'C' is pressed | | | If C2=0 – '5' is pressed | If C2=0 – 'D' is pressed | | | If C3=0 – '6' is pressed | If $C3=0$ – 'E' is pressed | | | If C3=0 – '7' is pressed | If C3=0 – 'F' is pressed | | . #### VIII Practical Circuit diagram: a) Sample circuit diagram Fig 15.2 8051 connection to 4x4 matrix keypad ## b) Practical setup Fig 15.3 Practical Setup ## c) Simulation diagram Fig 15.4 Simulation diagram d) Actual circuit used in laboratory e) Actual Experimental set up used in laboratory #### IX Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|----------------------------------|--|----------| | 1. | Microcontroller
kit | Single board systems with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2. | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | | 3. | Keyboard
4x4 trainer
board | Suitable to interface with 8051 trainer kit | 1No. | #### **X** Precautions to be Followed - 1. LCD panel is made up of glass avoid applying strong pressure on to the surface of display area. - 2. Ensure proper connection then only give electric supply to circuit. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart. - 3. Develop assembly program using Integrated Development Environment (IDE). - 4. Debug and simulate program on IDE. - 5. Create hex file. - 6. Download hex code in EPROM/Flash memory of microcontroller. - 7. Interface 4x4 keypad and 16x2 LCD to microcontroller. - 8. Observe output status of key and note it in observation Table ## **SAMPLE PROGRAM 1**: Write a program to display key pressed on LCD. **Step1- Algorithm** - 1. Define LCD control pins RS, RW, EN. - 2. Make LCD Port P0 as an output port. - 3. Make the keypad Port P1 pins as an input port. - 4. Initialize LCD by sending commands. - 5. Make R1 low& read columns C1, C2, C3 and C4 If C1=0 display '0', If C2=0 display '1', If C3=0 display '2', If C4=0 display '3' - 6. Make R2 low& read columns C1, C2, C3 and C4. If C1=0 display '4', If C2=0 display '5', If C3=0 display '6', If C4=0 display '7'. - 7. Make R3 low& read columns C1, C2, C3 and C4. If C1=0 display '8', If C2=0 display '9', If C3=0 display 'A', If C4=0 display 'B' - 8. Make R4 low& read columns C1, C2, C3 and C4. If C1=0 display 'C', If C2=0 display 'D', If C3=0 display 'E', If C4=0 display 'F' - 9. Go to step 5 to scan keypad. - 10. Stop #### **Step 2-Flow Chart** Fig 15.5 Flowchart to display the key pressed on LCD **Step 3-Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|----------|---------------|----------------------------| | | | | ROW1 BIT P1.0 | ;keypad row pins | | | | | ROW2 BIT P1.1 | | | | | | ROW3 BIT P1.2 | | | | | | ROW4 BIT P1.3 | | | | | | COL1 BIT P1.4 | ;keypad column pins | | | | | COL2 BIT P1.5 | | | | | | COL3 BIT P1.6 | | | | | | COL4 BIT P1.7 | | | | | | RS BIT P2.5 | ;LCD control pins | | | | | RW BIT P2.6 | | | | | | EN BIT P2.7 | | | | | | ORG 0000H | | | C:0x0000 | 758000 | | MOV P0,#00H | ;make LCD port as output | | C:0x0003 | 11AB | | ACALL LCDINIT | | | C:0x0005 | 7590FF | KEYSCAN: | MOV P1,#0FFH | ;step 1 make port as input | | C:0x0008 | C290 | | CLR ROW1 | ;make row1=0 | | C:0x000A | 30943E | | JNB COL1,K0 | ;check col1 | |----------|--------|-----|---------------|------------------| | C:0x000D | 309441 | | JNB COL2,K1 | ;check col2 | | C:0x0010 | 309444 | | JNB COL3,K2 | ;check col3 | | C:0x0013 | 309447 | | JNB COL4,K3 | ;check col4 | | C:0x0016 | 7590FF | | MOV P1,#0FFH | ;step 2 | | C:0x0019 | C291 | | CLR ROW2 | ;make row2=0 | | C:0x001B | 309445 | | JNB COL1,K4 | ,make 10 W2=0 | | C:0x001E | 309548 | | JNB COL2,K5 | | | C:0x0021 | 30964B | | JNB COL3,K6 | | | C:0x0024 | 30974E | | JNB COL4,K7 | | | C:0x0027 | 7590FF | | MOV P1,#0FFH | ;step 3 | | C:0x002A | C292 | | CLR ROW3 | ;make row3=0 | | C:0x002C | 30954C | | JNB COL1,K8 | , | | C:0x002F | 30954F | | JNB COL2,K9 | | | C:0x0032 | 309652 | | JNB COL3,KA | | | C:0x0035 | 309755 | | JNB COL4,KB | | | C:0x0038 | 7590FF | | MOV P1,#0FFH | ;step 4 | | C:0x003B | C293 | | CLR ROW4 | ;make row4=0 | | C:0x003D | 309453 | | JNB COL1,KC | <u> </u> | | C:0x0040 | 309556 | | JNB COL2,KD | | | C:0x0043 | 309659 | | JNB COL3,KE | | | C:0x0046 | 30975C | | JNB COL4,KF | | | C:0x0049 | 80BA | | SJMP KEYSCAN | ;repeat scanning | | C:0x004B | 7430 | K0: | MOV A,#"0" | ;key 0 detected | | C:0x004D | 11CD | | ACALL DISPLAY | | | C:0x004F | 0105 | | AJMP KEYSCAN | | | C:0x0051 | 7431 | K1: | MOV A,#"1" | ;key 1 detected | | C:0x0053 | 11CD | | ACALL DISPLAY | | | C:0x0055 | 0105 | | AJMP KEYSCAN | | | C:0x0057 | 7432 | K2: | MOV A,#"2" | ;key 2 detected | | C:0x0059 | 11CD | | ACALL DISPLAY | | | C:0x005B | 0105 | | AJMP KEYSCAN | | | C:0x005D | 7433 | K3: | MOV A,#"3" | ;key 3 detected | | C:0x005F | 11CD | | ACALL DISPLAY | | | C:0x0061 | 0105 | | AJMP KEYSCAN | | | C:0x0063 | 7434 | K4: | MOV A,#"4" | ;key 4 detected | | C:0x0065 | 11CD | | ACALL DISPLAY | | | C:0x0067 | 0105 | | AJMP KEYSCAN | | |----------|------|----------|---------------|----------------------------------| | C:0x0069 | 7435 | K5: | MOV A,#"5" | ;key 5 detected | | C:0x006B | 11CD | | ACALL DISPLAY | | | C:0x006D | 0105 | | AJMP KEYSCAN | | | C:0x006F | 7436 | K6: | MOV A,#"6" | ;key 6 detected | | C:0x0071 | 11CD | | ACALL DISPLAY | | | C:0x0073 | 0105 | | AJMP KEYSCAN | | | C:0x0075 | 7437 | K7: | MOV A,#"7" | ;key 7 detected | | C:0x0077 | 11CD | | ACALL DISPLAY | | | C:0x0079 | 0105 | | AJMP KEYSCAN | | | C:0x007B | 7438 | K8: | MOV A,#"8" | ;key 8 detected | | C:0x007D | 11CD | | ACALL DISPLAY | | | C:0x007F | 0105 | | AJMP KEYSCAN | | | C:0x0081 | 7439 | K9: | MOV A,#"9" | ;key 9 detected | | C:0x0083 | 11CD | | ACALL DISPLAY | | | C:0x0085 | 0105 | | AJMP KEYSCAN | | | C:0x0087 | 7441 | KA: | MOV A,#"A" | ;key A detected | | C:0x0089 | 11CD | | ACALL DISPLAY | | | C:0x008B | 0105 | | AJMP KEYSCAN | | | C:0x008D | 7442 | KB: | MOV A,#"B" | ;key B detected | | C:0x008F | 11CD | | ACALL DISPLAY | | | C:0x0091 | 0105 | | AJMP KEYSCAN | | | C:0x0093 | 7443 | KC: | MOV A,#"C" | ;key C detected | | C:0x0095 | 11CD | | ACALL DISPLAY | | | C:0x0097 | 0105 | | AJMP KEYSCAN | | | C:0x0099 | 7444 | KD: | MOV A,#"D" | ;key D detected | | C:0x009B | 11CD | | ACALL DISPLAY | | | C:0x009D | 0105 | | AJMP KEYSCAN | | | C:0x009F | 7445 | KE: | MOV A,#"E" | ;key E detected | | C:0x00A1 | 11CD | | ACALL DISPLAY | | | C:0x00A3 | 0105 | | AJMP KEYSCAN | | |
C:0x00A5 | 7446 | KF: | MOV A,#"F" | ;key F detected | | C:0x00A7 | 11CD | | ACALL DISPLAY | | | C:0x00A9 | 0105 | | AJMP KEYSCAN | | | C:0x00AB | 7438 | LCDINIT: | MOV A,#38H | ;init LCD 2 lines, 5x7
matrix | | C:0x00AD | 11C0 | | ACALL COMMAND | | | | | | - | - | | C:0x00AF | 740E | | MOV A,#0EH | ;LCD on cursor on | |----------|------|-----------|---------------|-----------------------------------| | C:0x00B1 | 11C0 | | ACALL COMMAND | ,202 011 001201 011 | | C:0x00B3 | 7406 | | MOV A,#06H | ;clear LCD command | | C:0x00B5 | 11C0 | | ACALL COMMAND | ,crear ECD command | | C:0x00B7 | 7401 | CLEAR: | MOV A,#01H | ;shift cursor right | | C:0x00B9 | 11C0 | CLL/IIC. | ACALL COMMAND | ,sinit cursor right | | С.0х00В9 | 1100 | | ACALL COMMAND | ;Force cursor to | | C:0x00BB | 7480 | | MOV A,#80H | beginning of 1 st line | | C:0x00BD | 11C0 | | ACALL COMMAND | | | C:0x00BF | 22 | | RET | | | C:0x00C0 | F580 | COMMAND : | MOV P0,A | ;issue command code | | C:0x00C2 | C2A5 | | CLR RS | | | C:0x00C4 | C2A6 | | CLR RW | | | C:0x00C6 | D2A7 | | SETB EN | | | C:0x00C8 | 11DE | | ACALL DELAY | | | C:0x00CA | C2A7 | | CLR EN | | | C:0x00CC | 22 | | RET | | | C:0x00CD | F580 | DISPLAY: | MOV P0,A | ;issue data | | C:0x00CF | D2A5 | | SETB RS | | | C:0x00D1 | C2A6 | | CLR RW | | | C:0x00C3 | D2A7 | | SETB EN | | | C:0x00D5 | 11DE | | ACALL DELAY | | | C:0x00D7 | C2A7 | | CLR EN | | | C:0x00D9 | 11DE | | ACALL DELAY | ;add delay | | C:0x00DB | 11B7 | | ACALL CLEAR | ;LCD clear | | C:0x00DD | 22 | | RET | | | C:0x00DE | 7B32 | | MOV R3,#50 | | | C:0x00E0 | 7CFF | | MOV R4,#255 | | | C:0x00E2 | DCFE | DELAY: | DJNZ R4,LOOP1 | | | C:0x00E4 | DBFA | LOOP2: | DJNZ R3,LOOP2 | | | C:0x00E6 | 22 | LOOP1: | RET | | | | | | END | | ## XII Resources Used | Sr. No. | Instrument /Components | Specification | Quantity | |---------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | 4. | | | | | 5. | | | | | | | | | •••••• | |----|------------------|---|---------------------------|----------------| | | | | | | | | ••••• | re | cautions Follo | owed (use blank she | eet provided if space no | ot sufficient) | | | cautions Follo | owed (use blank she | eet provided if space no | ot sufficient) | | | | | seet provided if space no | | | | | | | | | | Sr. No. | ample program (u | se blank sheet provide | | | | Sr. No. | ample program (u
Key Pressed | se blank sheet provide | | | | Sr. No. | ample program (u Key Pressed 2 5 | se blank sheet provide | | | | Sr. No. | ample program (u Key Pressed 2 5 9 | se blank sheet provide | | | | Sr. No. | ample program (u Key Pressed 2 5 | se blank sheet provide | | | | Sr. No. 1 2 3 4 | Ample program (u Key Pressed 2 5 9 B | se blank sheet provide | | | [Space for Answers] | |---------------------| crocontroller & Application (22426) | |-------------------------------------| ## XIX References / Suggestions for further reading - 1. https://en.wikipedia.org/wiki/Keypad. - 2. https://components101.com/misc/4x4-keypad-module-pinout-configuration-features-datasheet. - 3. The 8051 Microcontroller and Embedded system Using Assembly and C-Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson /Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030. #### **XX** Assessment Scheme | | Performance Indicators | Weightage | |---|--|-----------| | | Process related(15 Marks) | 60% (15) | | 1 | Coding and Debugging ability | 30% | | 2 | Making connections of hardware | 20% | | 3 | Follow ethical practices. | 10% | | | Product related (10 Marks) | 40%(10) | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition. | 15% | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | Total (25 Marks) | 100% (25) | | Name of Team Members | | | | |----------------------|--|--|--| | 1 | | | | | 2 | | | | | 3 | | | | | 4 | | | | | | Marks Obtained | | Dated signature of Teacher | |----------------------------|-------------------------|------------|----------------------------| | Process
Related
(15) | Product
Related (10) | Total (25) | | | | | | | ## Practical No. 16: Interface ADC with 8051 microcontroller and verify input / output. ### I Practical Significance In the real world most of the signals sensed and processed by humans are analog signals. Analog-to-digital conversion is the primary means by which analog signals are converted into digital data that can be processed by computers for various purposes. This practical will help the students to develop skills to interface LCD to the microcontroller and verify input/output. ### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of ADC for given application. - Interface ADC to the microcontroller. - Verify input and output. #### IV Relevant Course Outcome(s) • Maintain microcontroller used in different application. #### V Practical Outcome • Interface ADC with 8051 microcontroller and verify input/output. #### VI Relevant Affective domain related Outcome(s) - Follow safe practices. - Practice good housekeeping. - Practice energy conservation - Maintain tools and equipment #### VII Minimum Theoretical Background An analog-to-digital converter, or simply ADC, is a semiconductor device that is used to convert an analog signal into a digital code. An analog signal is a signal that may assume any value within a continuous range. Examples of analog signals commonly encountered every day are sound, light, temperature, and pressure, all of which may be represented electrically by an analog voltage or current. #### **Types of ADC:** **Serial ADC:** Serial ADC's consisting of just one output pin that delivers the output code one bit at a time. **Parallel ADC:** Parallel ADC's consisting of several output pins that deliver all the bits of the output code at the same time. ## **Specifications ADC0808 Chip** #### ADC0808 Analog signal selection: | ADC0808 IC - analog to digital | Analog Channel | СВА | |---|----------------|-------| | Resolution -8 Bits | IN0 | 0 0 0 | | Input Channels- 8 | IN1 | 0 0 1 | | Single Supply- 5VDC | IN2 | 0 1 0 | | Low Power- 15mW | IN3 | 0 1 1 | | | IN4 | 1 0 0 | | Conversion Time -100μs | IN5 | 1 1 1 | | Output's meets TTL voltage level. | IN6 | 1 1 0 | | The clock frequency range of ADC is 10 KHz to 1280 KHz. | IN7 | 1 1 1 | | Typically 680 kHz used. | | | Low power consumption Fig 16.1 Functional block diagram of ADC 0808 chip ## VIII Practical Circuit diagram: a) Sample circuit diagram Fig 16.2 8051 connection to ADC 0808 Fig 16.3 Practical Setup | Microco | ntroller & Application (22426) | |---------|---| | c) | Actual circuit used in laboratory | d) | Actual Experimental set up used in laboratory | | | | | | | | | | | | | | | | #### IX Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|------------------------|--|----------| | 1. | Microcontroller | Single board systems with 8K RAM,ROM | 1 No. | | | kit | memory with battery backup,16X4,16X2LCD | | | | | display, PC keyboard interfacing facility, Hex | | | | | keypad facility, single user cross c-compiler,RS- | | | | | 232,USB, interfacing facility with built in power | | | | | supply. | | | 2. | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | | | | program do winouding sort wino | | | 3. | ADC (0808) | Suitable to interface 8051 board. | 1 No. | | | trainer board | | | #### **X** Precautions to be Followed - 1. Refer datasheet for to provide clock frequency to ADC 0808 chip. - 2. Care must be taken while taking observations during power up. - 3. Use current limiting resistors for LED's. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the above program. - 7. Download hex code in EPROM/Flash memory of the microcontroller. - 8. Interface ADC 0808 IC to the microcontroller as per circuit diagram shown in fig 16.2 - 9. To make changes in input refer observation Table and note hex output observed on LEDs. **SAMPLE PROGRAM 1**: Write a program to read the data from ADC and display on 8 LEDs connected to port 2. #### STEP1- Algorithm - 1. Select an analog channel by providing bits to A, B, and C addresses according to
the analog signal selection table. - 2. Activate the ALE (address latch enable) pin. - 3. Activate SC (start conversion) to initiate conversion. - 4. Monitor EOC (end of conversion) to see whether conversion is finished. H-to L output indicates that the data is converted and is ready to be picked up. If we do not use EOC, we can read the converted digital data after a brief time delay. The delay size depends on the speed of the external clock we connect to the CLK pin. - 5. Activate OE (output enable) to read data out of the ADC chip. *Note:* In ADC0808 that there is no self-clocking and the clock must be provided from an external source to the CLK pin. Although the speed of conversion depends on the frequency of the clock connected to the CLK pin, it cannot be faster than 100 microseconds. ### **Step 2-Flow Chart** Fig 16.4 Flowchart for ADC ## **Step 3-Assembly Language Program** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|----------------------|------------------------| | | | | ALE BIT P3.0 | | | | | | SC BIT P3.1 | | | | | | EOC BIT P3.2 | | | | | | OE BIT P3.3 | | | | | | ADDR_A BIT P3.4 | | | | | | ADDR_B BIT P3.5 | | | | | | ADDR_C BIT P3.6 | | | | | | MY_DATA EQU P1 | | | | | | ORG 0000H | | | C:0x0000 | 7590FF | | MOV
MY_DATA,#0FFH | ;make P1 as input | | C:0x0003 | D2B2 | | SETB EOC | ;make EOC an input | | C:0x0005 | C2B0 | | CLR ALE | ;clear ALE | | C:0x0007 | C2B1 | | CLR SC | ;clear WR | | C:0x0009 | C2B3 | | CLR OE | ;clear RD | | C:0x000B | C2B6 | BACK: | CLR ADDR_C | ;C=0 | | C:0x000D | C2B5 | | CLR ADDR_B | ;B=0 | | C:0x000F | D2B4 | | SETB ADDR_A | ;A=1(select channel 1) | | C:0x0011 | 1131 | | ACALL DELAY | | | C:0x0013 | D2B0 | | SETB ALE | ;latch address | | C:0x0015 | 1131 | | ACALL DELAY | | | C:0x0017 | D2B1 | | SETB SC | ;start conversion | | C:0x0019 | 1131 | | ACALL DELAY | | | C:0x001B | C2B0 | | CLR ALE | | | C:0x001D | C2B1 | | CLR SC | | | C:0x001F | 20B2FD | HERE: | JB EOC,HERE | ;wait | |----------|--------|--------|---------------|-------------------| | C:0x0022 | 30B3FD | HERE1: | JNB EOC,HERE1 | | | C:0x0025 | D2B3 | | SETB OE | | | C:0x0027 | 1131 | | ACALL DELAY | | | C:0x0029 | E590 | | MOV A,MY_DATA | | | C:0x002B | F590 | | MOV P2,A | | | C:0x002D | C2B3 | | CLR OE | | | C:0x002F | 80DA | | SJMP BACK | | | C:0x0031 | 7B19 | DELAY: | MOV R3,#25 | ;Delay Subroutine | | C:0x0033 | 7C64 | L3: | MOV R4,#100 | | | C:0x0035 | 7D64 | L2: | MOV R5,#100 | | | C:0x0037 | DDFE | L1: | DJNZ R5,L1 | | | C:0x0039 | DCFA | | DJNZ R4,L2 | | | C:0x003B | DBF6 | | DJNZ R3,L3 | | | C:0x003D | 22 | | RET | | | | | | END | | ## XII Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | XIII | Actual Procedure Followed (use blank sheet if space not sufficient) | | | | |------|---|--|--|--| XIV | Precaution | ns Followed (use | blank sheet if space not sufficient) | | |------|------------------------|--------------------------------|--|-------------| | | | | | . . | | | | | | | | | | | | • • • • | | XV | Observatio | ons (use blank she | eet if space not sufficient) | ••• | | | | Input Voltage | Output HEX Value observed on LED's | | | | | 1V | | | | | | 2V | | | | | | 3V | | | | | | 4V | | | | | | 5V | | | | XVII | Interpret | ation of Results (| Give meaning of the above obtained results) | | | | | | | | | XVII | | ons and Recomtion of results). | mendation (Actions/decisions to be taken based on | :he | | | | | | | | XIX | Note: Bel
such ques | stions so as to ens | sample questions for reference. Teacher must design moure the achievement of identified CO | re | | | | - | d to 2.56V then what will be the step size of ADC0808? where serial ADC and parallel ADC chips are used. | | | | 3. Draw | timing diagram f | For selecting a channel and read data for ADC 0808. ADC 0808 and ADC 0848. | | | [Space for Answers] | |---------------------| Wilcocontroller & Application (22420) | |---| | | | | | | | | | | | *************************************** | #### XIX References / Suggestions for further reading - 1. https://en.wikipedia.org/wiki/Analog-to-digital converter. - 2. https://pdf1.alldatasheet.com/datasheet-pdf/view/155397/TI/ADC0808.html - 3. The 8051 Microcontroller and Embedded system Using Assembly and C-Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson /Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030. #### XX Assessment Scheme | | Performance Indicators | Weightage | |---|--|-----------| | | Process related(15 Marks) | 60% | | 1 | Coding and Debugging ability | 30% | | 2 | Making connections of hardware | 20% | | 3 | Follow ethical practices. | 10% | | | Product related (10 Marks) | 40% | | 4 | Correctness of algorithm/ Flow chart | 20% | | 5 | Relevance of output of the problem definition. | 15% | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | Total (25 Marks) | 100% | | 1 | | |---|--| | 2 | | Name of Team Members 3 4 | Mar | Dated
signature of
Teacher | | | |----------------------|----------------------------------|-------------------|--| | Process Related (15) | Product
Related (10) | Total (25) | | | | | | | # Practical No. 17: Interface DAC with 8051 microcontroller and observe following waveforms: square wave, triangular wave, sawtooth wave ## I Practical Significance The digital to analog converter (DAC) is a device widely used to convert digital pulses to analog signals. This practical will help the students to develop skills to interface DAC with 8051 and generate different analog waveforms. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - **Experiments and practice:** Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. - **Lifelong learning:** Engage in independent and life-long learning activities in the context of technological changes also in the Electronics and Telecommunication engineering and allied industry #### III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type DAC for given application. - Interface DAC with microcontroller. - Generate different analog signals. #### IV Relevant Course Outcome(s) • Maintain microcontroller used in different application. #### V Practical Outcome • Interface DAC with 8051 microcontroller and observe following waveforms: square wave, triangular wave, sawtooth wave. ## VI Relevant Affective domain related Outcome(s) - Follow safe practices. - Practice good housekeeping. - Practice energy conservation - Maintain tools and equipment #### VII Minimum Theoretical Background In DAC the number of data bit input decides the resolution since the number of analog output levels is equal to 2_n, where n is the number of data bit inputs. An 8 input DAC provides 256 discrete voltage (or current). The most commonly used, 8 bit, R/2R method followed DAC is DAC 0808 #### Two methods adopted for designing a DAC **1.** Binary weighted **2.** R/2R Ladder #### **Specifications DAC 0808 Chip** - DAC 0808 8-bit monolithic digital-to-analog converter (DAC) - Full scale output current settling time of 150 ns - Power dissipation 33 mW with ±5V supplies. - Relative accuracy: ±0.19% error maximum - No inverting digital inputs are TTL and CMOS compatible - High speed multiplying input slew rate: 8 mA/µs - Power supply voltage range: ± 4.5 V to ± 18 V #### **Equation:** $$I_{\text{out}} = I_{\text{ref}} \left(\frac{D7}{2} + \frac{D6}{4} + \frac{D5}{4} + \frac{D4}{16} + \frac{D3}{32} + \frac{D2}{64} + \frac{D1}{128} + \frac{D0}{256} \right)$$ Where D0 is the LSB, D7 is the MSB for the inputs, and I_{ref} is the input current. The I_{ref} current is generally set to 2.0mA. Fig 17.1 Functional block diagram of DAC 0808 chip ## VIII Practical Circuit diagram: ## a) Sample circuit diagram **Fig 17.2 8051 connection to DAC 0808** ## b) Practical setup Fig 17.3 Practical Setup | . \ | A . 4 . 1 | | | laboratory | |----------|-----------|----------|----------|-------------| | c | A CHIAL | CITCILIT | บเรอส บท | Ianoratory | | ~ 1 | Actual | CIICUIL | uscu III | 1abbrator v | d) Actual Experimental set up used in laboratory #### IX Resources Required | Sr.
No. | Instrument /Components | Specification | Quantity | |------------|-----------------------------|--|----------| | 1 | Microcontroller
kit | Single board systems with 8K RAM,ROM memory with battery backup,16X4,16X2LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | 1 No. | | 2 | Desktop PC | Loaded with open source IDE, simulation and program downloading
software | 1 No. | | 3 | DAC (0808)
trainer board | Suitable to interface 8051 board. | 1 No | #### **X** Precautions to be Followed 1. Operate DAC chip as per specifications given in the datasheet otherwise damage may occur to the device. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the above program. - 7. Download hex code in EPROM/Flash memory of microcontroller. - 8. Interface DAC 0808 IC to the microcontroller as per circuit diagram shown in fig 17.2 - 9. Observe Triangular waveform on CRO and draw the same pattern in observation mentioning Ton and Toff time. ## **SAMPLE PROGRAM 1**: Write a program to generate triangular waveform using DAC. **STEP1- Algorithm** - 1. Make the Port used to Interface DAC as an output port. - 2. Clear Accumulator. - 3. Send 00H value to DAC - 4. Increment value. - 5. Compare current value with highest value 0FFh and send it to DAC till it reaches. - 6. Decrement value. - 7. Compare current value with lowest value 00H and send it to DAC till it reaches. - 8. For repeat operation go to step3. - 9. Stop. #### **Step 2-Flow Chart** Fig 17.4 Flowchart to generate triangular waveform **Step 3-Assembly Language Program** | Memory
Address | Hex Code | Label | Mnemonics | Comments | |-------------------|----------|---------|-------------------|-----------------------------| | | | | ORG 0000h | | | C:0x0000 | 7400 | REPEAT: | MOV A,#00h | ;clear A | | C:0x0002 | F590 | INCR: | MOV P1,A | ;send value to P1 | | C:0x0004 | 04 | | INC A | ;increment value | | C:0x0005 | B4FFFA | | CJNE A,#0FFh,INCR | ;compare with highest value | | C:0x0008 | F590 | DECR: | MOV P1,A | | | C:0x000A | 14 | | DEC A | ;decrement value | | C:0x000B | B400FA | | CJNE A,#00h,DECR | ;compare with lowest value | | C:0x000E | 80F0 | | SJMP REPEAT | ;repeat | | | | | END | | **Problem statement for student:** Develop assembly program to generate sawtooth waveform using DAC 0808 | using DAC 0808 | | | | | |---------------------------------|------------------|--|--|--| | using DAC 0808 Step 1-Algorithm | Step 2-Flowchart | ## **Step 3- Assembly Language Program:** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|-------|-----------|----------| ## XII Resources Used | S. No. | Instrument /Components | Specification | Quantity | |--------|-------------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | 4. | | | | | 5. | | | | | XIII | Actual Procedure Followed (use blank sheet provided if space not sufficient) | |------|--| XIV | Precautions Followed (use blank sheet provided if space not sufficient) | | | | | | | | | | | | | | XXI | Results (Output of the Program) | |------|---| | | | | | | | | | | | | | | | | XII | Interpretation of Results (Give meaning of the above obtained results) | | | | | | | | | | | XIII | Conclusions and Recommendation | | | | | | | | | | | XIV | Practical Related Questions | | | Note: Below given are few sample questions for reference. Teacher must design more | | | such questions so as to ensure the achievement of identified CO 1. If Iref = 2mA and all the inputs to the DAC are high then find maximum current or | | | DAC 0808 IC. | | | 2. To generate a sine wave using DAC 0808 find decimal values representing magnitude | | | of the sine of angles between 0 and 360 degrees.
Refer Vout = $5V + (5x\sin\theta)$. | | | 3. If a switch SW is connected to port pin P0.0. Write a program to do the following. | | | a) When SW=0 the DAC output gives a triangular waveform. | | | b) When SW=1 the DAC output gives a staircase waveform. | | | [Space for Answers] | | Microcontroller & Application (22426) | | |---------------------------------------|-------| | | | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | cocontroller & Application (22426) | | |------------------------------------|-------| | | | | | | | | | | | • • • | | | | | | | | | | | | | | | ••• | | | | | | ••• | | 7 To 6 / C 4' 6 6 41 1' | | ### XIX References / Suggestions for further reading - 1 https://en.wikipedia.org/wiki/Digital-to-analog_converter. - 2 https://pdf1.alldatasheet.com/datasheet-pdf/view/512341/TI1/DAC0808.html - The 8051 Microcontroller and Embedded system Using Assembly and C-Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson / Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030. #### XX Assessment Scheme | | Weightage | | | |---|--|-----|--| | | Process related(15 Marks) | 60% | | | 1 | Coding and Debugging ability | 30% | | | 2 | Making connections of hardware | 20% | | | 3 | Follow ethical practices. | 10% | | | | 40% | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | 5 | Relevance of output of the problem definition. | 15% | | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | | Total (25 Marks) | | | | 1 | | |---|--| | 2 | | | 3 | | | 4 | | Name of Team Members | Marks Obtained | | | Dated signature of
Teacher | |----------------------------|----------------------------|-------------------|-------------------------------| | Process
Related
(15) | Product
Related
(10) | Total (25) | | | | | | | # Practical No. 18: Interface stepper motor to microcontroller and rotate in clockwise and anti-clockwise direction at the given angles. ## I Practical Significance Different field applications require precise positioning, repeatability of movement in clockwise and anticlockwise direction with good accuracy. Stepper motors are controlled by microcontrollers in such areas like in computer peripherals, Business machines, process control and for making robots. This practical will help the students to develop skills to interface stepper motor to 8051 and rotate in clockwise and anticlockwise direction. #### II Relevant Program Outcomes (POs) - **Discipline knowledge:** Apply Electronics and Telecommunication engineering knowledge to solve broad-based Electronics and Telecommunications engineering related problems. - Experiments and practice: Plan to perform experiments and practices to use the results to solve broad-based Electronics and Telecommunication engineering problems. - **Engineering tools:** Apply relevant Electronics and Telecommunications technologies and tools with an understanding of the limitations. ## III Competency and Practical Skills This practical is expected to develop the following skills for the industry identified competency 'Maintain microcontroller based systems': - Select appropriate type of stepper motor for given application. - Interface stepper motor with microcontroller. - Apply full step or half step sequence as per requirement of movement. #### IV Relevant Course Outcome(s) • Maintain microcontroller used in different application. #### V Practical Outcome • Interface stepper motor to microcontroller and rotate in clockwise and anti-clockwise direction at the given angles. #### VI Relevant Affective domain related Outcome(s) - Follow safe practices. - Maintain tools and equipment. - Follow ethical practices. #### VII Minimum Theoretical Background Fig 18.1 Basic Stepper motor system Stepper motors convert electrical energy into precise mechanical motion. These motors rotate a specific incremental distance per each step. The number of steps executed controls the degree of rotation of the motor's shaft **Table 18.1 Stepper Motor Step Angles** | Step Angle | Steps per | |------------|------------| | | revolution | | 0.72 | 500 | | 1.8 | 200 | | 2.0 | 180 | | 2.5 | 144 | | 5 | 72 | **Stepping Modes:** Wave Drive (1 phase on) Full Step Drive (2 phases on) Half Step Drive (1 & 2 phases on) Micro stepping (Continuously varying motor currents) Table 18.2 Two Coil Excitation full Step Sequence | P2.3 | P2.2 | P2.1 | P2.0 | Port
Pin | | |------|--------------------|------|------|-------------|-----------| | | ator Wi
Stepper | | | | | | A | В | С | D | Hex
code | Direction | | 1 | 0 | 0 | 1 | 09 H | CW 1 | | 1 | 1 | 0 | 0 | 0C H | | | 0 | 1 | 1 | 0 | 06 H | | | 0 | 0 | 1 | 1 | 03 H | ↓ CCW | # **Specifications: Permanent Magnet Stepper Motor** Part No-42BYG228-R Drive system- Unipolar Step angle-1.8° ±5% Voltage & Current-12V DC at 400 mA No of steps per revolution-200 Holding Torque-2000 g-cm Ambient temperature--10°C to +55°C **Table 18.3 Stepper motor working** attracting the nearest teeth of the
gear-shaped iron rotor. With the teeth aligned to electromagnet 1, they will be slightly offset from right electromagnet (2). off, and the right electromagnet (2) is energized, pulling the teeth into alignment with it. This results in a rotation of 1.8° in this example. **Frame 3:** The bottom electromagnet (3) is energized; another 1.8° rotation occurs. **Frame 4:** The left electromagnet (4) is energized, rotating again by 1.8°. When the top electromagnet (1) is again enabled, the rotor will have rotated by one tooth position; since there are 50 teeth, it will take 200 steps to make a full rotation in this example. #### VIII Practical Circuit diagram: a) Sample circuit diagram Fig 18.2 8051 connection to stepper motor #### b) Practical setup c) Simulation diagram Fig 18.3 Practical Setup ## P0.0/AD0 P0.1/AD1 P0.2/AD2 XTAL1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 XTAL2 ■34 U2 RST P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 1B 2B 3B 4B 5B 6B 7B ■23 ■24 29= 30= 31= PSEN ■25 ■26 ■27 Unipolar Stepper Motor = 11 P3.0/RXD P3.1/TXD P3.2/INT0 P3.2/INT1 P3.4/T0 P3.5/T1 P3.6/WR ■ 15 Fig 18.4 Simulation diagram P3.7/RD AT89C51 | d) | Actual | circuit | used | in | laborator | v | |----|--------|---------|------|----|-----------|---| e) Actual Experimental set up used in laboratory #### IX Resources Required | Sr.
No. | Instrument
/Components | Specification | Quantity | |------------|---------------------------|---|----------| | 1. | Microcontroller
kit | Single board systems with 8K RAM,ROM memory with battery backup,16X4,16X2LCD | 1 No. | | | | display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply. | | | 2. | Desktop PC | Loaded with open source IDE, simulation and program downloading software | 1 No. | | 3. | Stepper Motor
Trainer | 1.8° Step angle, 50/100 RPM Stepper motor with ULN 2003 Driver. | 1 No. | #### X Precautions to be Followed 1. Use always driver circuit while interfacing stepper motor to microcontroller. #### XI Procedure - 1. Write algorithm for given problem. - 2. Draw flowchart for the same. - 3. Develop assembly program using Integrated Development Environment (IDE) or any other relevant software tool. - 4. Debug program on IDE. - 5. Execute program on IDE. - 6. Create hex file for the above program. - 7. Download hex code in EPROM/Flash memory of the microcontroller. - 8. Interface stepper motor to microcontroller as per circuit diagram shown in fig 18.5 - 9. Observe rotation of stepper motor and record in observation Table. ## **SAMPLE PROGRAM 1**: Write a program to rotate stepper motor in clockwise direction by 180^{0} . #### Step 1- Algorithm - 1. Make the Port used to Interface stepper motor as an output port. - 2. Set register as counter R2 = 25 for 100 steps i.e. 180° rotation. - 3. Set register as counter R3= 4 for full step code - 4. Initialize pointer to table which is in code memory i.e. DPTR. - 5. Clear accumulator. - 6. Read data from code memory. - 7. Send code to stepper motor. - 8. Increment DPTR to access next memory location code. - 9. Decrement R3 and check for zero. Is counter R3=0? NO- go to step 5 else go to next. - 10. Decrement R2 and check for zero. Is counter R2=0? NO- go to step 3 else go to next. - 11. Stop. #### **Step 2-Flow Chart** Fig 18.5 Flowchart for stepper motor to rotate in clockwise 100 steps ## **Step 3-Assembly Language Program** | Memory
Address | Hex
Code | Label | Mnemonics | Comments | |-------------------|-------------|--------|-----------------------|--| | | | | ORG 0000H | | | C:0x0000 | 759000 | | MOV P1,#00H | ;Define port as output port | | C:0x0003 | 7A19 | | MOV R2,#25 | ;Set register as counter of 25 for 180 rotation | | C:0x0005 | 7B04 | UP1: | MOV R3,#4 | ;set counter of 4 for full step code sequence | | C:0x0007 | 900200 | | MOV DPTR,#TABLE | ;load address of program memory into Data pointer | | C:0x000A | E4 | UP: | CLR A | ;clear accumulator | | C:0x000B | 93 | | MOVC A,@A+DPTR | ;read step code from memory into accumulator | | C:0x000C | F590 | | MOV P1,A | ;send step code to port | | C:0x000E | 1117 | | ACALL DELAY | ;add delay | | C:0x0010 | A3 | | INC DPTR | ;increment memory pointer to read next step code | | C:0x0011 | DBF7 | | DJNZ R3,UP | ; decrement counter & jump to
memory location labeled as UP if
not equal to zero. | | C:0x0013 | DAF0 | | DJNZ R2,UP1 | ; decrement counter & jump to
memory location labeled as UP1 if
not equal to zero. | | C:0x0015 | 80FE | | SJMP \$ | ;wait | | C:0x0017 | 7C19 | DELAY: | MOV R4,#25 | ;delay Subroutine | | C:0x0019 | 7D64 | L3: | MOV R5,#100 | | | C:0x001B | 7E64 | L2: | MOV R6,#100 | | | C:0x001D | DEFE | L1: | DJNZ R6,L1 | | | C:0x001F | DDFA | | DJNZ R5,L2 | | | C:0x0021 | DCF6 | | DJNZ R4,L3 | | | C:0x0023 | 22 | | RET | | | | | | ORG 0050H | | | C:0x0050 | | TABLE: | DB 09H, 0CH, 06H, 03H | ; Step code stored at code memory starting at location 0050H onward. | | | | | END | | **Problem statement for student:** Develop assembly program for stepper motor to rotate 90° in anticlockwise direction using rotate instruction. Assume step angle 1.8° Step 1-Algorithm Step 2-Flowchart | Memory
Address | Hex
Code | nguage Prog
Label | Mnemonics | Comments | |-------------------|-------------|----------------------|-----------|----------| | Auuress | Code | 1 | VII | Resources | Licad | |-------|-----------|-------| | A 1 1 | Resources | USEC | | S. No. | Instrument /Components | Specification | Quantity | |--------|------------------------|---------------|----------| | 1. | | | | | 2. | | | | | 3. | | | | | 4. | | | | | 5. | | | | | Actual Procedure Follo | wed (use blank sheet p | provided if space not sufficient) | |------------------------------------|-----------------------------|---| Observations for sample | program (use blank s | neet provided if space not sufficient) | | Observations for sample Step Code | program (use blank si | neet provided if space not sufficient) Status - logic 1 (+5V) / logic 0 (0V) | | | | · · | | Step Code | Port Pin | · · | | Step Code
9H | Port Pin P2.4 - P2.0 | <u> </u> | **Results** (Output of the Program) XVI | Microco | Microcontroller & Application (22426) | | | | |---------|---|--|--|--| | XVII | Interpretation of Results (Give meaning of the above obtained results) | XVIII | Conclusions and Recommendation | XIX | Practical Related Questions Note: Below given are few sample questions for reference. Teacher must design more such questions so as to ensure the achievement of identified CO Write specifications of 4 different stepper motors available in the market. Calculate no of steps to move stepper motor 64 degree in clockwise direction if step angle is 2 degree, steps per revolution 180 & no of rotor teeth 45. If a motor takes 90 steps to make one complete revolution, what is the step angle for this motor? | | | | | | [Space for Answers] | | | | | | | | | | | •••••• | | | | | | •••••• | | | | | | •••••• | | | | | | •••••• | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | •••••• | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | •••••• | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | | licrocontroller & Application (22426) | |---------------------------------------| ## XX References / Suggestions for further reading - 1. https://en.wikipedia.org/wiki/Stepper_motor. - 2. https://www.jameco.com/Jameco/Products/ProdDS/155433.pdf - 3. The 8051 Microcontroller and Embedded system Using Assembly and C- Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay- Pearson /Prentice Hall, , 2nd edition, Delhi,2008, ISBN 978-8177589030 - 4. https://www.youtube.com/watch?v=TWMai3oirnM #### XXI Assessment Scheme | | Performance Indicators | | | |---|--|------|--| | | Process related(15 Marks) | | | | 1 | Coding and Debugging ability | 30% | | | 2 | Making connections of hardware | 20% | | | 3 | Follow ethical practices. | 10% | | | | Product related (10 Marks) | | | | 4 | Correctness of algorithm/ Flow chart | 20% | | | 5 |
Relevance of output of the problem definition. | 15% | | | 6 | Timely Submission of report, Answer to sample questions. | 05% | | | | Total (25 Marks) | 100% | | | Name of Team Members | | | | | | | |----------------------|--|--|--|--|--|--| | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | Marks Obtained | | | Dated signature of
Teacher | |-------------------------|----------------------|-------------------|-------------------------------| | Process
Related (15) | Product Related (10) | Total (25) | | | | | | | | List Of Laboratory Manuals Developed by MSBTE | |--| |--| | | List Of Laboratory Manuals Developed by MSBTE | | | | | | |---|---|--|----------------|----------|---|----------------| | | Firs | t Semester: | I | | | | | | 1 | Fundamentals of ICT | 22001 | | | | | | 2 | English | 22101 | 19 | Fundamentals Of Mechatronics | 22048 | | | 3 | English Work Book | 22101W | 20 | Micro Project & Industrial Training Assessment Manual | 22049 | | | 4 | Basic Science (Chemistry) | 22102 | THE SALE | | | | | 5 | Basic Science (Physics) | 22102 | | nSemester: | 4=004 | | | Sec | ond Semester: | | 1 | Network Management & Administration | 17061 | | | 1 | Bussiness Communication Using Computers | 22009 | 2 | Solid Modeling | 17063 | | | 2 | Computer Peripherals & Hardware Maintenace | 22013 | 4 | CNC Machines Behavioral Science(Hand Book) | 17064
17075 | | | 3 | Web Page Design with HTML | 22014 | 5 | Behavioral Science (Assignment Book) | 17075 | | | 4 | Applied Science (Chemistry) | 22202 | 6 | Windows Programming using VC++ | 17076 | | | 5 | Applied Science (Physics) | 22202 | 7 | Estimation and Costing | 17501 | | | 6 | Applied Machines | 22203 | 8 | Public Health Engineering | 17503 | | | 7 | Basic Surveying | 22205 | 9 | Concrete Technology | 17504 | | | 8 | Applied Science (Chemistry) | 22211 | 10 | Design of Steel Structures | 17505 | | | 9 | Applied Science (Physics) | 22211 | 11 | Switchgear and Protection | 17508 | | | 10 | Fundamental of Electrical Engineering | 22212 | 12 | Microprocessor & Application | 17509 | | | 11 | Elements of Electronics Engineering | 22213 | 13
14 | A.C. Machines | 17511
17512 | | | 12 | Elements of Electrical Engineering | 22215 | 15 | Operating System Java Programming | 17512 | | | 13 | Basic Electronics | 22216 | 16 | System Programming | 17517 | | | 14 | C Language programming | 22218 | 17 | Communication Technology | 17519 | | | 15 | Basic Electronics | 22225 | 18 | Hydraulic & Pneumatics | 17522 | | | 16 | Programming in C | 22226 | 19 | Advanced Automobile Engines | 17523 | | - | 17 | Fundamental of Chemical Engineering | 22231 | 20 | Basic Electrical & Electronics | 17524 | | | <u>Thir</u> | d Semester: | | 21 | Measurement and Control | 17528 | | - | 1 | Applied Multimedia Techniques | 22024 | 22 | Power Engineering | 17529 | | - | 2 | Advanced Serveying | 22301 | 23 | Metrology & Quality Control | 17530
17533 | | | 3 | Highway Engineering | 22302 | 24
25 | Computer Hardware & Networking Microcontroller | 17533 | | | 4 | Mechanics of Structures | 22303 | 26 | Digital Communication | 17534 | | | 5 | Building Construction | 22304 | 27 | Control System & PLC | 17536 | | | 6 | Concrete Technology | 22305 | 28 | Audio Video Engineering | 17537 | | | 7 | Strength Of Materials | 22306 | 29 | Control System | 17538 | | | 8 | Automobile Engines | 22308 | 30 | Industrial Electronics and applications | 17541 | | | 9 | Automobile Transmission System | 22309 | 31 | Heat Transfer Operations | 17560 | | | 10 | Mechanical Operations | 22313 | 32 | Chemical Process Instrumentation & control | 17561 | | | 11 | Technology Of Inorganic Chemicals | 22314 | Sixt | h Semester: | | | | 12 | Object Oriented Programming Using C++ | 22316 | 1 | Solid Modeling | 17063 | | | 13 | Data Structure Using 'C' | 22317 | 2 | Highway Engineering | 17602 | | | 14 | Computer Graphics | 22318 | 3 | Contracts & Accounts | 17603 | | | 15 | Database Management System | 22319 | 4 | Design of R.C.C. Structures | 17604 | | | 16 | Digital Techniques | 22320 | 5
6 | Industrial Fluid Power Design of Machine Elements | 17608
17610 | | | 17 | Principles Of Database | 22321 | 7 | Automotive Electrical and Electronic Systems | 17617 | | | 18 | Digital Techniques & Microprocessor | 22323 | 8 | Vehicle Systems Maintenance | 17618 | | | 19 | Electrical Circuits | 22324 | 9 | Software Testing | 17624 | | | 20 | Electrical & Electronic Measurment | 22325 | 10 | Advanced Java Programming | 17625 | | | 21 | Fundamental Of Power Electronics
Electrical Materials & Wiring Practice | 22326 | 11 | Mobile Computing | 17632 | | | 23 | | 22328
22329 | 12 | System Programing | 17634 | | | 24 | Applied Electronics Electrical Circuits & Networks | 22329 | 13 | Testing & Maintenance of Electrical Equipments | 17637 | | | 25 | Electronic Measurments & Instrumentation | 22333 | 14 | Power Electronics | 17638 | | | 26 | Principles Of Electronics Communication | 22334 | 15
16 | Illumination Engineering Power System Operation & Control | 17639
17643 | | | 27 | Thermal Engineering | 22337 | 17 | Environmental Technology | 17646 | | | 28 | Engineering Matrology | 22342 | 18 | Mass Transfer Operation | 17648 | | | 29 | Mechanical Engineering Materials | 22343 | 19 | Advanced Communication System | 17656 | | | 30 | Theory Of Machines | 22344 | 20 | Mobile Communication | 17657 | | | | • | | 21 | Embedded System | 17658 | | | | rth Semester: | 00.40.4 | 22 | Process Control System | 17663 | | | 1 | Hydraulics | 22401 | 23 | Industrial Automation | 17664 | | | 2 | Geo Technical Engineering | 22404 | 24 | Industrial Drives | 17667 | | | 3 | Chemical Process Instrumentation & Control | 22407 | 25
26 | Video Engineering Optical Fiber & Mobile Communication | 17668
17669 | | | 4 | Fluid Flow Operation | 22409 | 26
27 | Therapeutic Equipment | 17669 | | | 5 | Technology Of Organic Chemical | 22410 | 28 | Intensive Care Equipment | 17671 | | | 6 | Java Programming GULApplication Development Using VR not | 22412 | 29 | Medical Imaging Equipment | 17673 | | | 7
Ω | GUI Application Development Using VB.net Microprocessor | 22034
22415 | | Pharmacy Lab Manual | | | | 8
9 | Database Managment | 22415 | Firs | t Year: | | | | 10 | Electric Motors And Transformers | 22418 | 1 | Pharmaceutics - I | 0805 | | | 11 | Industrial Measurement | 22410 | 2 | Pharmaceutical Chemistry - I | 0806 | | | 12 | Digital Electronic And Microcontroller Application | 22421 | 3 | Pharmacognosy | 0807 | | | 13 | Linear Integrated Circuits | 22423 | 4 | Biochemistry and Clinical Pathology | 0808 | | | 14 | Microcontroller & Applications | 22426 | 5 | Human Anatomy and Physiology | 0809 | | | 15 | Basic Power Electronics | 22427 | | ond Year: | 0011 | | | 16 | Digital Communication Systems | 22428 | 1
2 | Pharmaceutics - II Pharmaceutical Chemistry - II | 0811
0812 | | | 17 | Mechanical Engineering Measurments | 22443 | 3 | Pharmacology & Toxicology | 0812 | | | 18 | Fluid Mechanics and Machinery | 22445 | 4 | Hospital and Clinical Pharmacy | 0816 | | | | • | | | • | | | L | | | | | | | ## **HEAD OFFICE** Secretary, Maharashtra State Board of Technical Education 49, Kherwadi, Bandra (East), Mumbai - 400 051 Maharashtra (INDIA) Tel: (022)26471255 (5 -lines) Fax: 022 - 26473980 Email: -secretary@msbte.com Web -www.msbte.org.in ## **REGIONAL OFFICES:** **MUMBAI** Deputy Secretary (T), Mumbai Sub-region, 2nd Floor, Govt. Polytechnic Building, 49, Kherwadi, Bandra (East) Mumbai - 400 051 Phone: 022-26473253 / 54 Fax: 022-26478795 Email: rbtemumbai@msbte.com **NAGPUR** Deputy Secretary (T), M.S. Board of Technical Education Regional Office, Mangalwari Bazar, Sadar, Nagpur - 440 001 Phone: 0712-2564836 / 2562223 Fax: 0712-2560350 Email: rbteng@msbte.com **PUNE** Deputy Secretary (T), M.S. Board of Technical Education, Regional Office, 412-E, Bahirat Patil Chowk, Shivaji Nagar, Pune Phone: 020-25656994 / 25660319 Fax: 020-25656994 Email: rbtepn@msbte.com **AURANGABAD** Deputy Secretary (T), M.S. Board of Technical Education, Regional Office, Osmanpura, Aurangabad -431 001. Phone: 0240-2334025 / 2331273 Fax: 0240-2349669 Email: rbteau@msbte.com