

Zeal Education Society's **ZEAL POLYTECHNIC, PUNE** NARHE | PUNE -41 | INDIA

DEPARTMENT OF ELECTRICAL ENGINEERING

SECOND YEAR (SY)

SCHEME: I

SEMESTER: III

NAME OF SUBJECT: ELECTRICAL CIRCUITS Subject Code: 22324

UNIT WISE MULTIPLE CHOICE QUESTIONS BANK

ZEAL EDUCATION SOCIETY'S ZEAL POLYTECHNIC,PUNE NARHE | PUNE -41 | INDIA DEPARTMENT OF ELECTRICAL ENGINEERING

Question Bank for Multiple Choice Questions

Program: Diploma in Electrical engineering	Program Code:- EE
Scheme:-I	Semester:- 3
Course:- Electrical Circuits	Course Code:- 22324

01 – AC Series Circuits	Marks:-15	
 Content of Chapter:- 1.1 Generation of alternating voltage, phasor representation of sinusoidal quantities. 1.2 R, L, C circuit elements its voltage and current response. 1.3 R-L,R-C,R-L-C combination of A.C series circuit, impedance, reactance, impedance triangle, power factor, active power, apparent power, power triangle and vector diagram. 1.4 1.4 Resonance, Bandwidth, Quality factor and voltage magnification in series R-L, R-C, R-L-C circuit. 		
 All definitions of power factor of a series R-I (A) Ratio of net reactance and impedance (C) Ratio of J and Z 	L -C circuit are correct except (B) Ratio of kW and kVA (D) Ratio of W and VA	
Answer: - Option A Explanation: - Power factor=Cos Φ=R/Z=Active power/Apparent Power		
 2. Ohm is unit of all of the following except (A) Inductive reactance (C) Resistance Answer: - Option C Explanation: - unit of capacitance is farads 	(B) Capacitive reactance (D) Capacitance	
3. If two sinusoids of the same frequency but o the resultant is	f different amplitudes and phase angles are subtracted,	
 (A) A sinusoid of the same frequency (C) A sinusoid of double the frequency 	(B) A sinusoid of half the original frequency(D) Not a sinusoid	
Explanation: - sinusoidal quantities with same free	quency can be added or subtracted	
 4. Form factor for a sine wave is (A) 1.414. (C) 1.11. Answer: - Option C 	(B) 0.707 (D) 0.637	
Explanation: - form factor=RMS Value/Average V	alue=1.11	

5. All the rules and laws of D.C. circuit also apply to A.C. circuit containing

- (A) Capacitance only
- (C) Resistance only

(B) Inductance only

(D) All above

Answer: - Option C

Explanation: - Resistance is not charge or energy storing element of electrical circuit.

6. In R-L-C series resonant circuit magnitude of resonance frequency can be changed by changing the value of

(A) R only (C) C only Answer: - Option D Explanation:- (B) L only (D) L or C

 $f_o = \frac{1}{2\pi\sqrt{LC}}$

7. In an A.C. circuit power is dissipated in

(A) Resistance only

(C) Capacitance only

(B) Inductance only (D) None of the above

Answer: - Option A

Explanation: - Resistance in a circuit that has a voltage drops across it and dissipates power

8. The R.M.S. value of half wave rectified sine wave is 200 V. The r.m.s. value of full wave rectified AC. will be

(A) 282.8 \ (C) 111 V	V			(B) 141.4 V (D) 100 V	
Answer:-Option	n A				
Explanation:	Given,				
	$\mathrm{V}_{rms}=200\mathrm{V}$				
	We know the formula	${ m a}{ m V}_{ m rms}=rac{{ m V}_{ m applied}}{\sqrt{2}}$			
	So, $V_{applied} = 200\sqrt{2}$			-1990	
	$\Rightarrow = 282.8 V$				
9. The voltage	of domestic	supply is 220	V. This figu	re represents	
(A) Mean (C) Peak	value value			(B) r.m.s. value (D) Average value	
Answer: - Option	on A				
10. The transie	ent currents a	re associated	d with the		

(A) Changes in the stored energy in the inductors and capacitors(C) Applied voltage to the circuit

(B) Impedance of the circuit (D) Resistance of the circuit

Answer: Option A

Explanation: - Oscillatory or aperiodic current that flows in a circuit for a short time following an electromagnetic disturbance is called transient current

11. The power consumed in a circuit element will be least when the phase difference between the current and voltage is

A) 180° C) 60°	0	(B) 90° (D) 0°

12. Form Factor is the ratio of

(A) Average value/r.m.s. value

(C) r.m.s. value/average value

(B) Average value/peak value

(D) r.m.s. value/peak value

Answer: - Option C

Explanation: -form factor=RMS Value/Average Value=1.11

13. Capacitive reactance is more when

(A) Capacitance and frequency of supply is less (B) Capacitance is less and frequency of supply is more (C) Capacitance is more and frequency of supply is less (D) Capacitance and frequency of supply is more Answer: - Option A

Explanation:-

 $X_{C} = \frac{1}{2\pi fC}$

14. Pure inductive circuit

(A) Consumes some power on average

(C) Store energy in magnetic field and again return to source Answer: - Option C

Explanation: - No power is consumed in the circuit.

(B) Does not take power at all from a line (D) None of the above

15. Power factor of the following pure circuit will be zero

(A) Resistance (B) Inductance (C) Capacitance (D) Both (B) and (C)

Answer: - Option D

Explanation: - Power=V*I*cosΦ=V*I*cos(90)=0

16. The double energy transient occur in the

- (A) Purely inductive circuit
- (C) R-C circuit

Answer: - Option D

17. in any A.C. circuit always

- (A) Apparent power is more than actual power
- (C) Actual power is more than reactive power
- Answer: Option A
- **Explanation: -** Apparent Power=Active Power + Reactive Power

18. Magnitude of current at resonance in R-L-C circuit

- (A) Depends upon the magnitude of R
- (C) Depends upon the magnitude of C
- (B) Depends upon the magnitude of L
- (D) Depends upon the magnitude of R, Land C

(B) Reactive power is more than apparent power

(D) Reactive power is more than actual power

Answer: - Option A

Explanation: - Current=Voltage/impedance but for resonance only resistance is considered not impedance

19. When a sinusoidal voltage is applied across R-L series circuit having R = XL, the phase angle will be

(A) Lag by 45°

(B) Lag by 90°

(B) R-L circuit

(D) R-L-C circuit

20. What do you know about RL circuit?

- (A) An electric circuit composed of resistors and inductors in series and driven by a voltage or current source
- (B) Conductor
- (C) an device composed of resistors and inductors driven by a voltage or current source
- (D) None of the above
- Answer: Option A

21. Equation for induced emf is given by $e=BLV^*sin\theta$ where θ represent

- (A) Angle made by coil with magnetic flux
- (B) Angle made by coil with external circuit (D) magnetic flux density

(C) Length of coil

24. In following figure B represents.....

36. Following figure represents which type of AC Circuit.....

39. Which of following is correct sequence

44. Identify type of circuit from voltage and current equation's

Applied Voltage, v = V_m sin ωt Resultant Current, $i = I_{m} \sin \omega t$ (A) Purely Resistive (B) Purely Inductive (C) Purely Capacitive (D) None Answer: - Option A 45. Identify type of circuit from voltage and current equation's Applied Voltage, v = Vmsin ωt Resultent Current, i = $I_{m}sin(\omega t - \frac{\pi}{2})$ (A) Purely Resistive (B) Purely Inductive (C) Purely Capacitive (D) None Answer: - Option B 46. Formula & Unit of Active Power is (B) Q=V*I*SinΦ, VAR (A) S=V*I, VA (C) P=V*I*CosΦ, Watt (D) None Answer: - Option C 47. Formula & Unit of Reactive Power is (A) S=V*I, VA (B) Q=V*I*SinΦ, VAR (C) P=V*I*CosΦ, Watt (D) None Answer: - Option B 48. Formula & Unit of apparent Power is (A) S=V*I, VA (B) Q=V*I*SinΦ, VAR (C) P=V*I*CosΦ, Watt (D) None Answer: - Option A

49. Which of following is correct sequence?

Sr.	Condition		Power Factor (Cos Φ)
1	X _L > X _C	a	Less than one and leading
2	$X_{\rm C}$ > $X_{\rm L}$	b	Unity
3	X _L =X _C	С	Less than one and lagging

(A) 1-a, 2-b, 3-c (C) 1-c, 2-b, 3-a (B) 1-c, 2-a, 3-b (D) None

Answer: - Option B

50. Formula for Q factor at resonance in RLC series circuit is?

A. $Q = \sqrt{\frac{L}{c}}$	B. $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
C. $Q = \frac{1}{R} \sqrt{\frac{C}{L}}$	D. $Q = \sqrt{\frac{c}{L}}$

Droporod Dv	Verified By	Re-Verified By	Approved By
Mr. Mondolo D. K	Mr. Lavhate V. J.	Mr. Patil S. S.	Mr. Mandale R.K.
	Module Coordinator	Academic Coordinator	HoD EE

ZEAL EDUCATION SOCIETY'S ZEAL POLYTECHNIC,PUNE NARHE | PUNE -41 | INDIA

DEPARTMENT OF ELECTRICAL ENGINEERING

02 – AC Parallel Circuits	Marks:-13
Content of Chapter:-	
2.1 R-L, R-C and R-L-C parallel combination of A	.C circuits, Impedance, reactance, phasor diagram,
impedance triangle.	
2.2 R-L, R-C and R-L-C parallel A.C circuits power factor, active power, apparent power, reactive power,	
power triangle.	
2.3 Resonance in parallel R-L, R-C, R-L-C circuit, Band	width, Quality factor and voltage magnification.

1. Identify the circuit given in figure

2. Identify phasor diagram for R-L parallel circuit

Answer: - Option C

3. Resultant impedance for R-L Parallel Circuit is calculated using relation

Α	$Z = \frac{Z_1 + Z_2}{Z_1 * Z_2}$	В	$Z = \frac{Z_1 * Z_2}{Z_1 + Z_2}$
С	$Z = \frac{Z_1 - Z_2}{Z_1 * Z_2}$	D	None Of These

4. Formula for impedance in R-L Parallel circuit is

Answer: - Option C

5. An A.C. voltage is impressed across a pure resistance of 3.5 ohms in parallel with a pure inductance of impedance of 3.5 ohms,

(A) The current through the resistance is more

(C) Both resistance and inductance carry equal currents **Answer: -** Option C

- (B) The current through the resistance is less
- (D) None of the above

(B) unity

(D) None of above

6. Power factor for R-L Parallel circuit is

- (A) Leading
- (C) Lagging

Answer: - Option C

7. Power factor of electric bulb is

(A) Zero (C) Leading (B) Lagging (D) Unity

Answer: - Option D

8 If a sinusoidal wave has frequency of 50 Hz with 30 A r.m.s. current which of the following equation represents this wave?

(A) 42.42 sin 314 t (C) 30 sin 50 t Answer: - Option A (B) 60 sin 25 t (D) 84.84 sin 25 t

Explanation: -Peak value=RMS Value/ $\sqrt{2}$ =42.42

9 Power factor of the system is kept high

(A) To reduce line losses

- (B) To maximize the utilization of the capacities of generators, lines and transformers
- (C) To reduce voltage regulation of the line
- (D) Due to all above reasons

Answer: - Option D

10. At ______ frequencies the parallel R-L circuit behaves as purely resistive.

(A) Low (B) Very low (C) High (D) Very high

Answer: - Option D

11. In parallel circuit power loss is due to......

(A) Conductance alone

(C) Both A& B

Answer: - Option A

(B) Susceptance alone

(D) none of above

- (A) Acquire less space
- (B) Voltage across each will be rated (C) Operation of each become independent (D) B & C
- Answer: Option D

17. Identify phasor diagram for R-C parallel circuit

18. Resultant impedance for R-C Parallel Circuit is calculated using relation

Α	$Z = \frac{Z_1 + Z_2}{Z_1 * Z_2}$	В	$Z = \frac{Z_1 * Z_2}{Z_1 + Z_2}$
С	$Z = \frac{\overline{Z_1} - \overline{Z_2}}{\overline{Z_1} + \overline{Z_2}}$	D	None Of These
er' . ()	Intion B	(C)	

Answer: - Option B

19. Formula for impedance in R-C Parallel circuit is

$$\begin{bmatrix} Z \\ = \frac{R * X_C \angle 90}{\sqrt{R^2 + X_C^2} \angle \tan^{-1} \frac{X_C}{R}} \end{bmatrix} = \frac{Z}{\sqrt{R^2 + X_L^2} \angle \tan^{-1} \frac{X_C}{R}}$$
$$\begin{bmatrix} Z \\ = \frac{R * X_L \angle 90}{\sqrt{R^2 + X_L^2} \angle \tan^{-1} \frac{X_L}{R}} \end{bmatrix} D$$
None Of These

Answer: - Option A

20. An A.C. voltage is impressed across a pure resistance of 3.5 ohms in parallel with a pure capacitor of impedance of 3.5 ohms,

(A) The current through the resistance is more

(C) Both resistance and inductance carry equal currents Answer: - Option C

21. Power factor for R-C Parallel circuit is

- (A) Leading
- (C) Lagging

Answer: - Option A

22. Power factor of Capacitor is

(A)	Zero
~ ~ ~	-0.0

(B) Lagging

- (B) The current through the resistance is less
- (D) None of the above
- (D) None of above

(B) unity

(C) Leading Answer: - Option C	(D) Unity
23. At frequencies the pa	rallel R-C circuit behaves as purely resistive. (B) Very low
(C) High Answer: - Option D	(D) Very high
24. In a parallel R-C circuit, the curre	nt alwaysthe applied voltage
(C) Remains in phase with Answer: - Option B	(D) None of the above
25. At very low frequencies a series F	R-C circuit behaves as almost purely
(A) Resistive	(B) Inductive
(C) Capacitive Answer: - Option C	(D) None of the above
26. In a parallel circuit, we consider _	instead of impedance.
(A) Resistance	(B) Capacitance
(C) Inductance	(D) Admittance
Answer: -D	
Explanation: In a parallel circuit, we co reciprocal of impedance.	nsider admittance instead of impedance, where admittance is the
27. In a parallel circuit, we consider a	dmittance instead of
(A) Resistance	(B) Capacitance
(C) Inductance	(D) Impedance
Answer: -D	
Explanation: In a parallel circuit, we co reciprocal of impedance.	nsider admittance instead of impedance, where admittance is the
28. Which, among the following is the	e correct expression for impedance?
(A) $Z=Y$	(B) Z=1/Y
(C) Z=Y2	(D) Z=1/Y2
Answer: -B Explanation: We know that impedance impedance is: Z=1/Y.	is the reciprocal of admittance, hence the correct expression for
29. Which, among the following is the	e correct expression for admittance?
(A) Z=Y	(B) Z=1/Y
(C) Z=Y2	(D) Z=1/Y2
Answer: -B	
Explanation: We know that admittance admittance is: Y=1/Z.	e is the reciprocal of impedance, hence the correct expression for
30. What is the unit of admittance?	
(A) Ohm	(B) henry
(C) farad	(D) ohm ⁻¹

(ت) tarad Answer: -D **Explanation:** The unit for admittance is ohm⁻¹ because the unit of impedance is ohm and admittance is the reciprocal of impedance.

31. As the impedance increases, the	e admittance
(A) Increases	(B) Decreases
(C) Remains the same	D becomes zero
Answer: -B	
Explanation: As the impedance increative 1/impedance.	ases, the admittance decreases because admittance is equal to
32. If the impedance of a system is 4	ohm, calculate its admittance.
(A) 0.25 ohm ⁻¹	(B) 4 ohm ⁻¹
(C) 25 ohm ⁻¹	(D) 0.4 ohm ⁻¹
Answer: -A	
Explanation: We know that: Y=1/Z.	×
Substituting the value of Z from the que	estion, we get Y = 1/4 = 0.25 => Y= 0.25 ohm ⁻¹ .
33. The admittance of a system is 10) ohm-1, calculate its impedance.
(A) 10 ohm	(B) 0.1 ohm
(C) 1 ohm	(D) 1.1 ohm
Answer: -B	
Explanation: We know that: $Z=1/Y$. Z = 1/10 = 0.1 => Z = 0.1 ohm.	
34. In A parallel circuit, with any nun (A) Equal	nber of impedances, the voltage across each impedance is (B) Divided equally
(C) Divided proportionally	(D) zero
Answer: -A	
Explanation: In parallel circuits, the constraints of the second secon	urrent across the circuits vary whereas the voltage remains the same. equal in parallel circuit
35. In a parallel circuit, current in each	ch impedance is
(A) equal	(B) different
(C) zero	(D) infinite
Answer: -B	
Explanation: In parallel circuits, the ci	urrent across the circuits vary whereas the voltage remains the same.
So, current in each impedance is different	ent
36. From the given circuit, find the v	alue of IR.
↓ ¥ ¥	

Answer: -C

Explanation: In the given circuit, the voltage across the resistor is the same as the source voltage as they are connected in parallel. The current in the resistor is I_R hence $I_R=V/R$.

37. What is the relation between IR and V in the following circuit?

Answer: -C

Explanation: In the following circuit I_R and V are in phase because I_R is the current in the resistor and the current in the resistor is always in phase with the voltage across it.

38. What is the expression for the current in the inductor from the following circuit?

Explanation: In the given circuit, the voltage across the inductor is the same as the source voltage as they are connected in parallel. The current in the inductor is I_L hence $I_L=V/X_L$.

39. What is the phase relation between IL and V from the following circuit?

Answer: A

Explanation: IL is the current across the inductor and we know that the current across the inductor always lags the voltage across it. Hence IL lags V.

40. Find the expression for the current I from the given circuit.

Answer: C

Explanation: I is the total current in the circuit. Since this is a parallel connection, the total current in the circuit is equal to the sum of the currents in each branch of the circuit. Hence $I=I_{C}+I_{R}$.

41. Find the total current if IC=2A and IR=5A.

Answer: C

Explanation: I is the total current in the circuit. Since this is a parallel connection, the total current in the circuit is equal to the sum of the currents in each branch of the circuit. Hence I=I_C+I_R. I=2+5=7A.

42. Find the value of IR if I=10A and IC=8A.

Answer: D

Explanation: I is the total current in the circuit. Since this is a parallel connection, the total current in the circuit is equal to the sum of the currents in each branch of the circuit. Hence I=I_C+I_R. 10=8+I_R => I_R=2A.

43. Find the value of IL if IC=10A and IR=6A.

Answer: A

Explanation: I is the total current in the circuit. Since this is a parallel connection, the total current in the circuit is equal to the sum of the currents in each branch of the circuit. Hence $I=I_C+I_R$. $10 = I_{C} + 6 => I_{C} = 4A.$

44. What is the expression for the current in the capacitor from the following circuit?

Answer: D

Explanation: In the given circuit, the voltage across the capacitor is the same as the source voltage as they are connected in parallel. The current in the capacitor is I_C hence I_C=V/X_C.

45. What is the phase relation between IC and V from the following circuit?

Answer: B

Explanation: I_C is the current across the capacitor and we know that the current across the capacitor always leads the voltage across it. Hence I_C leads V.

45. In an impedance parallel network, the reactive component will the voltage by 90 degrees.

a) Lead	
c) Either lead or lag	

b) Lag d) Depends on the circuit

Answer: C

Explanation: In an impedance parallel network the reactive component will either lead or lag the voltage by 90 degrees.

46. In an impedance parallel network, the reactive component will either lead or lag the voltage by

degrees.	
a) 0	b) 90
c) 45	d) 180

Answer: C

47. In an impedance parallel network, the reactive component will either lead or lag the by 90 degrees.

a) Voltage b) Current

c) Either voltage or current d) Cannot be determined

Answer: A

Explanation: In an impedance parallel network the reactive component will either lead or lag the voltage by 90 degrees.

48. The reactive component in an impedance parallel circuit leads the voltage when the current the voltage.

a) Leads

c) Either leads or lags

c) Be in phase with

b) Lags

d) Cannot be determined

Answer: A

Explanation: The reactive component in an impedance parallel circuit leads the voltage when the current leads the voltage.

49. The active component in an impedance parallel circuit will ______ the voltage.

- a) Leads
 - b) Lags d) Either leads or lags

Answer: C

Explanation: The active component in an impedance parallel network will always be in phase with the voltage in the circuit.

50. The phase difference between the active component of an impedance parallel circuit and the voltage in the network is

a) 0	b) 90
c) 180	d) 360

Answer: A

Explanation: The active component in an impedance parallel network will always be in phase with the voltage in the circuit. Hence the phase difference is 0.

51. The quadrature component is also known as?

- a) Active component
- c) Either active or reactive component
- b) Reactive component
- d) Neither active nor reactive component

Answer: B

Explanation: The quadrature component is also known as the reactive component because the reactive component forms a quadrature with the voltage.

52. Find the expression for the current I from the given circuit.

Answer: C

Explanation: I is the total current in the circuit. Since this is a parallel connection, the total current in the circuit is equal to the sum of the currents in each branch of the circuit. Hence I=I_R+I_L.

53. Find the value of IR if I=10A and IL=8A.

		*	
Prepared By	Verified By	Re-Verified By	Approved By
Mr. Mandalo P. K	Mr. Lavhate V. J.	Mr. Patil S. S.	Mr. Mandale R.K.
	Module Coordinator	Academic Coordinator	HoD EE

ZEAL EDUCATION SOCIETY'S ZEAL POLYTECHNIC,PUNE NARHE | PUNE -41 | INDIA

DEPARTMENT OF ELECTRICAL ENGINEERING

03 – AC Parallel Circuits	Marks:-13

Content of Chapter:-

3.1 Phasor and complex representation of three phase supply.

3.2 Phase sequence and polarity.

3.3 Types of three phase connections, phase and line quantities in three phase star and delta system.

3.4 Balanced and unbalanced load, neutral shift in unbalanced load.

3.5 Three phase power, active, reactive and apparent power in star and delta system.

1. Which of following is mathematical representation of 3 phase voltages?

Answer: - Option A

2. Which of following is Phasor representation of 3 phase voltages?

3. Which of following is complex representation of 3 phase voltages?

$V_{R} = V_{m} \sin \omega t$ $V_{y} = V_{m} \sin (\omega t - 120)$ $V_{B} = V_{m} \sin (\omega t - 240)$ $= V_{m} \sin (\omega t + 120)$ (A)	(B) $V_{9} (V_{9} _{qg} V_{R} _{y} _{20}^{\circ})$ (B) $V_{9} (V_{9} _{qg} V_{R} _{y} _{20}^{\circ})$
VR= Vm sin lut = Vm Loo	(D) None of these
$V_{y} = V_{m} \sin(\omega t - 2\pi y_{3}) = V_{m} L - 2\pi y_{3}^{b}$	*
(C) $V_{B} = V_{m} \sin \left(\omega t + 2\Pi_{3}\right) = V_{m} L 2\Pi_{3}^{*}$	S *

4. Which of following is advantage on 3 Phase AC over 1 Phase AC System?

- (A) More output power
- (C) Self-starting of machine is possible **Answer: -** Option D

(B) Less space required to produce same power (D) All of them

5. Phase Sequence is a sequence in which 3 phase voltages reach their Values

- (A) Minimum positive
- (C) Minimum Negative
- Answer: Option B

- (B) Maximum Positive
- (D) Maximum Negative

6. What happens if Phase sequence is changed?

- (A) Motor takes large current
- (C) Motor Stops
- Answer: Option B

- (B) Motor rotation direction changes
- (D) Motor continue rotation in same direction

Explanation: - Phase Sequence is a sequence in which 3 phase voltages reach their maximum positive values

8. Identify the type of three phase connection?

- (A) Three Phase Three Wire Star Connected System
- (B) Three Phase Four Wire Star Connected System
- (C) Three Phase Three Wire Delta Connected System
- (D) None of above

9. Identify the type of three phase connection?

(A) Three Phase Three Wire Star Connected System

- (B) Three Phase Four Wire Star Connected System
- (C) Three Phase Three Wire Delta Connected System
- (D) None of above

Answer: - Option B

10. Identify the type of three phase connection?

- (A) Three Phase Three Wire Star Connected System
- (B) Three Phase Four Wire Star Connected System
- (C) Three Phase Three Wire Delta Connected System
- (D) None of above

Answer: - Option C

Page 27 of 50

Answer: - Option C

Explanation: - All impedances are equal so all values will be equal

23. In Unbalanced star or Delta connected load all phase and line values of current & voltage will be.....

(A) Unequal

(B) Depends on type of load

(C) Equal

(D) None of above

Answer: - Option A

Explanation: - All impedances are unequal so all values will be unequal

24. For a star connected three phase AC circuit —

- (A) Phase voltage is equal to line voltage and phase current is root three times the line current
- (B) Phase voltage is square root three times line voltage and phase current is equal to line current
- (C) Phase voltage is equal to line voltage and line current is equal to phase current
- (D) None of the above

Answer: - Option B

$$I_L = I_{ph}$$
.

$$V_L = \sqrt{3}V_{ph}$$

Explanation: -

25. For a Delta connected three phase AC circuit -----

(A) Phase voltage is equal to line voltage and phase current is three times the line current

(B) Phase voltage is square root three times line voltage and phase current is equal to line current

(C) Phase voltage is equal to line voltage and line current is equal to square root three times phase current (D) None of the above

Answer: - Option C

$$V_L = V_P$$

Explanation: - $I_L = \sqrt{3} \times I_P$

26. Active Power in a Three Phase Circuit =

(A) $P = 3 V_{Ph} I_{Ph} Cos \Phi$ (C) Both 1 & 2 **Answer: -** Option B (B) P = $\sqrt{3}$ V_L I_L Cos Φ (D) None of The Above

Sr. No.	Type of Power	Equation of Power	Unito	of Power
1	Active Power	a- Q = √3 VL IL <u>SinΦ</u>	i-	VA
2	Reactive Power	b- S=√3 VL IL	ii-	Watt
3	Apparent Power	c- $P = \sqrt{3} V_L I_L Cos \Phi$	iii-	VAR
1-a-i				
2-b-ii		2-a-ii 19 III		
(A) <mark>3-c-iii</mark>	(B) 3-b-iii			
1-c-ii		1-c-ii		
2-a-iii		2-a-i		
(C) <mark>3-b-i</mark>		(D) <mark>3-b-iii</mark>		
Answer: - (Option C	· · /		

27. Which of following is correct?

28. A three phase delta connected balanced load having resistance of 50 ohm/phase and capacitance of 50 microfarads/phase supplied by 440 V, 50 Hz AC supply. Capacitive reactance will be.

of 50 microfarads/phase supp	lied by 440 V, 50 Hz AC suppl
(A) 60 ohm	(B) 63.69 ohm
(C) 80 Ohm	(D) 100 ohms
Answer: - Option B	

 29. In problem no. 28 Total Impedance will be. (A) 60 ohm (C) 80.97 Ohm Answer: - Option C 	(B) 63.69 ohm (D) 100 ohms
 30. In problem no. 28 Phase Current will be. (A) 1 Ampere (C) 5.43 Ampere Answer: - Option C 	(B) 2.43 Ampere (D) 8 Ampere
 31. In problem no. 28 Line Current will be. (A) 1 Ampere (C) 5.43 Ampere Answer: - Option D 	(B) 2.43 Ampere (D) 9.41 Ampere
 32. In problem no. 28 Active power will be. (A) 4400 Watt (C) 4400 VA Answer: - Option B 	(B) 4429.5 Watt (D) 4429.5 VA
 33. In problem no. 28 Reactive power will be. (A) 5682.5 VAR (C) 4400 VAR Answer: - Option A 	(B) 4429.5 VAR (D) 5000 VAR
 33. In problem no. 28 Power factor will be. (A) 0.6 (C) 0.5 Answer: - Option A 	(B) 0.8 (D) 0.9
 34. A three phase Star connected balanced lo reactance is 8 ohm/phase supplied by 400 V (A) 23.9 Volt (C) 300 Volt 	ad having resistance of 6 ohm/phase and inductive , 50 Hz AC supply. Find Phase voltage. (B) 230.9 Volt (D) 400 Volt
Answer: - Option B	
 35. In problem no. 34 Impedance will be. (A) 20 ohm (C) 80.97 Ohm Answer: - Option D 	(B) 63.69 ohm (D) 10 ohms
 36. In problem no. 34 Phase Current and line curr (A) 30 Ampere (C) 25 Ampere Answer: - Option C 	rent will be. (B) 23 Ampere (D) 24 Ampere
37. In problem no. 34 Active power will be. (A) 9510 Watt (C) 9500 Watt Answer: - Option B	(B) 9598.3Watt (D) 0 Watt

38. For a star connection network, consuming power of 1.8kW and power factor 0.5, the inductance and resistance of each coil at a supply voltage of 230 Volts, 60 Hz is?				
(A) 0.1H, 8 Ohms	(B) 0.5H, 10 Ohms			
(C) 0.3H, 7.4 Ohms	(D) 1H, 7 Ohms			
Answer: - Option C				
39. A three phase Delta connected balanced load AC supply. Find Zph.	having impedance of 6+j8 supplied by 400 V, 50 Hz			
(A) 10 Ohms	(B) 15 Ohms			
(C) 7.4 Ohms	(D) 7 Ohms			
Answer: - Option A				
40. In problem no. 39, Find Vph. (A) 450 Volt (C) 350 Volt Answer: - Option B	(B) 400 Volt D) 230 Volt			
41. In problem no. 39, find Iph (B (A) 30 A (B (C) 40A (D Answer: - Option C (D) 35 A) 45 A			

42. In problem no. 39, find I∟		
(A) 70 Å	(B) 75 A	
(C) 80A	(D) 85 A	
Answer: - Option A		

43. In problem no. 39, find Active Power (A) 20.7 Watt

(B) 22.7Watt (D) 28.7 Watt (C) 26.7 Watt Answer: - Option D

Droporod Dv	Verified By	Re-Verified By	Approved By
Prepared by	Mr. Lavhate V. J.	Mr. Patil S. S.	Mr. Mandale R.K.
	Module Coordinator	Academic Coordinator	HoD EE

ZEAL EDUCATION SOCIETY'S ZEAL POLYTECHNIC,PUNE NARHE | PUNE -41 | INDIA

DEPARTMENT OF ELECTRICAL ENGINEERING

04 – Network Reduction & Principles of DC Circuits	Marks:-13
Content of Chapter:- 4.1 Source transformation. 4.2 Star/delta and delta/star transformation. 4.3 Mesh Analysis. 4.4 Node Analysis	
1 In open circuit current through open branch will be?	×
(A) 1 A (C) 2 A (D) Insufficie Answer: - Option B	nt Data
2. In open circuit Resistance across open branch will b((A) 0 Ohm(B) c(C) Infinite Ohm(D) IAnswer: - Option C	e? can't calculate nsufficient Data
3. In Short circuit voltage across short circuited branch(A) 1 Volt(B) 0(C) 2 Volt(D) 1Answer: - Option B	n will be?) Volt nsufficient Data
4. In Short circuit resistance of short circuited branch(A) 1 Ohm(B) 0(C) 2 Ohm(D) 1Answer: - Option B	will be?) Ohm nsufficient Data
5. What is need of source transformation electrical circles(A) Simplify Network(B) F(C) Analysis of Complex network(D) AAnswer: - Option D	cuits? Finding Current & voltage in Network All of them
6. Value of Current I will be	

Equivalent Current Source

(B) I=V/Z

(C) I=V/R (D) All of them Answer: - Option C 7. Source Transformation depends on.....law (A) Thevnins law (B) Ohms Law (C) Kirchoff's Law (D) All of them Answer: - Option B

8. In source transformation series resistance of voltage source converted toresistance of current source

(A) Series (C) Depends on Circuit Answer: - Option B

(B) Parallel (D) none of them

9. Value of voltage V_s will be.....

(A) V_S=I*R (C) V_S=I*E Answer: - Option A (B) V_S=P*R (D) All of them

10. In source transformation Parallel resistance of current source converted toresistance of voltage source

(A) Series (C) Depends on Circuit Answer: - Option A

5V

(A) 15 Volt

10V

(C) 10 Volt

Answer: - Option A

(B) 20 Volt (D) 25 Volt

 $\mathbf{R}_{\mathrm{C}} = \frac{\mathbf{R}_{\mathrm{AC}} \, \mathbf{R}_{\mathrm{BC}}}{\mathbf{R}_{\mathrm{AB}} + \mathbf{R}_{\mathrm{AC}} + \mathbf{R}_{\mathrm{BC}}}$

(B) False

Answer: - B

20. in following circuit

 $V_{AB} + V_{BC} + V_{CD} + V_{DA} =$

21. When current is flowing from X to Y or Y to X, voltage across resistance will be

(B) 0 V

(D) 36 V

(C) Depends on circuit

(B) Positive (D) 0 V Page **36** of **50**

Answer: - B

24. When current is flowing from Y to X then voltage will be

× T

(A) Negative(C) Depends on circuitAnswer: - A

(B) Positive (D) 0 V

25. Algebraic sum of current at junction point is......(A) 10 A(B) 0 A(C) Can't be calculated(D) 36 AAnswer: - B

(A) 1.8 A (C) 0.5 A **Answer: -** D (B) 2 A (D) 1.5 A

27. Which one of following is correct sequence?

1- Kirchhoff's Current Law	a- Voltage In Closed loop is zero	i- Applied at Node
2- Kirchhoff's Voltage Law	b- Current at junction is zero	ii- Applied in mesh

(A) 1-a-i and 2-b-ii	(B) 1-b-i and 2-a-ii	
(C) 1-a-ii and 2-b-i	(D) 1-b-ii and 2-a-i	
Answer: - B		

28. Value of I1 will be

(A) 1.8 A	(B) 0.2 A
(C) 0.5 A	(D) 1.5 A
Answer: - B	

29. Voltage at Node A will be

31. The resistor values in delta network that is equivalent to a wye containing three 120 Ω resistors is

(A) 360 Ω each	(B) 240 Ω each
(C) 180 Ω each	(D) 120 Ω each
Answer: - A	

32. The resistor values in wye network that is equivalent to a delta containing three 12 k Ω resistors is

(A) $\angle K\Omega$ each	
(C) 8 kΩ each	
Answer: - B	

(B) 4kΩ each(D) 6 KΩ each

33. When a load of 1 k Ω is connected across a 20 mA current source, it is found that only 18 mA flows in the load. What is the internal resistance of the source?

Answer: - D

(B) $4k\Omega$ each (D) $9 K\Omega$ each

Droporod Dv	Verified By	Re-Verified By	Approved By
Mr. Mandala D. K	Mr. Lavhate V. J.	Mr. Patil S. S.	Mr. Mandale R.K.
	Module Coordinator	Academic Coordinator	HoD EE

ZEAL EDUCATION SOCIETY'S ZEAL POLYTECHNIC,PUNE NARHE | PUNE -41 | INDIA DEPARTMENT OF ELECTRICAL ENGINEERING

05 – Network Theorems	Marks:-15
Content of Chapter:- 5.1 Superposition theorem. 5.2 Thevenin's theorem 5.3 Norton's theorem 5.4 Maximum power transfer theorem. 5.5 Reciprocity theorem. 5.6 Duality in electric circuits.	*
 1. An active element in a circuit is one which (A) Receives energy (C) Both receives and supplies energy Answer: - B 	(B) Supplies energy(D) none of the above.
 2. A passive element in a circuit is one which (A) supplies energy (C) both supplies and receives energy Answer: - B 	(B) receives energy (D)) none of the above
 3. An electric circuit contains (A) active elements only (C) both active and passive elements Answer: - C 	(B) passive elements only(D) none of the above.
 4. A linear circuit is one whose parameters (e.g. re (A) change with change in current (C do not change with voltage and current Answer: C 	esistances etc.) (B change with change in voltage (D) none of the above.
5. In the circuit shown, the number of nodes is $I_1 \xrightarrow{10 \Omega} 20 \Omega \xrightarrow{20 \Omega} I_2 \xrightarrow{12} 10^{10} \xrightarrow{10} I_2 \xrightarrow{10} 10^{10} \xrightarrow{10} 10^{1$	<u>YI</u> EUHNIU
(A) one (C) three Answer: - D	(B) two (D) four

9. In the circuit shown, there are meshes.

Answer: - B

10 – To solve the circuit shown in Fig. 3.17 by Kirchhoff's laws, we require.....

11. To solve the circuit shown in Fig. 3.17 by nodal analysis, we require

Answer: - A

12. To solve the circuit shown in Fig. 3.17 by superposition theorem, we require

(B) two circuit

13. To solve the circuit shown in Fig. 3.17 by Maxwell's mesh current method, we require

14. In the circuit shown in Fig. 3.18, the voltage at node B with respect to D is calculated to be 15 V. The current in 3 resistors will be

15. The current in 2Ω horizontal resistor in Fig. 3.18 is

Answer: - C

16 – In order to solve the circuit shown in Fig. 3.18 by nodal analysis, we require

(C) passive elements only

Answer: - B

(B) a number of voltage source (D) none of the above

18. Fig. 3.19 (ii) shows Thevenin's equivalent circuit of Fig. 3.19 (i). The value of Thevenin's voltage Eth is

(A) 20 V	(B) 24 V
(C) 12 V	(D) 36 V
Answer: - B	

19 -The value of Rtn in Fig. 3.19 (ii) is

- (A) 15Ω (C) 6.4 Ω **Answer: -** D
- 20. The open-circuited voltage at terminals AB in Fig. 3.19 (i) is.....

(B) 3.5 Ω (D) 7.4Ω

(A) 20 V	(B) 24 V
(C) 12 V	(D) 36 V
Answer: - B	

21. For transfer of maximum power in the circuit shown in Fig. 3.19 (i), the value of RL should be

27. Fig. 3.21 (i) shows Norton's equivalent circuit of a network whereas Fig. 3.21 (ii) shows its Thevenin's equivalent circuit. The value of Eth is

(A) 1.5 V	(B) 0.866 V
(C) 3V	(D) 6V
Answer: - D	

28. The value of Rth in Fig. 3.21 (ii) is.

(A) 3Ω		
(C) 1.5Ω		
Answer: - A		

(B) 2Ω (D)) 6Ω

29. If in Fig. 3.21 (i), the value of In is 3 A, then value of Eth in Fig. 3.21 (ii) will be

(A) 20 V (B) 24 V (C) 12 V (D) 09 V Answer: - D

30. For transfer of maximum power, the relation between load resistance RL and internal resistance Ri of the voltage source is.....

32. The open-circuited voltage at the terminals of load RL is 30 V. Under the condition of maximum power transfer, the load voltage will be

power transfer, the load voltage with	
(A) 20 V	(B) 24 V
(C) 12 V	(D) 15 V
Answer: - D	

33. The maximum power transfer theorem is used in				
(A) electronic circuits	(B) power system			
(C) home lighting circuits	(D) none of the above			
Answer: - A				

 34. Under the condition of maximum power transfer, a voltage source is delivering a power of 30 W to the load. The power generated by the source is

 (A) 45 W
 (B) 30 W

 (C) 60 W
 (D) 90 W

 Answer: - C

(Α) 3Ω	(B) 2Ω
(C) 1.5Ω	(D) 6Ω
Answer: - D	

36. The open-circuited voltage at terminals AB in Fig. 3.22 is

37. If in Fig. 3.22, the value of RL = 6 Ω , then current through RL is

Fig. ' 22

(A) 2 A		
(C) 2.5 A		
Answer: - D		

38. Under the condition of maximum power transfer, the voltage across RL in Fig. 3.22 is.....

(B) 5 A (D) 1 A

Fig. ' 22

(A) 12 V	(B) 6 V
(C) 15 V	(D) 9.5 V
Answer: - B	

39. The output resistance of a voltage source is 4 Ω . Its internal resistance will be.....

(A) 3Ω	(B) <i>4</i> Ω
(C) 1.5Ω	(D) 6Ω
Answer: - B	

	191	1-100	
Droporod Dy	Verified By	Re-Verified By	Approved By
Mr. Mandale R. K.	Mr. Lavhate V. J.	Mr. Patil S. S.	Mr. Mandale R.K.
	Module Coordinator	Academic Coordinator	HoD EE

ALMETURI I BETHNIG