

## Zeal Education Society's ZEAL POLYTECHNIC, PUNE NARHE | PUNE -41 | INDIA

DEPARTMENT OF ELECTRICAL ENGINEERING

## **SECOND YEAR (SY)**

**SCHEME: I** 

SEMESTER: III

NAME OF SUBJECT: FUNDAMENTALS PF POWER ELECTRONICS Subject Code: 22326

## UNIT WISE MULTIPLE CHOICE QUESTIONS BANK





NARHE | PUNE -41 | INDIA DEPARTMENT OF ELECTRICAL ENGINEERING

#### Question Bank for Multiple Choice Questions

| Program: Diploma in Electrical engineering | Program Code:- EE   |
|--------------------------------------------|---------------------|
| Scheme:- I                                 | Semester:- 3        |
| Course:- Fundamentals of Power Electronics | Course Code:- 22326 |

| 01 – Power Electronic Devices                                  | Marks:-08                                    |  |
|----------------------------------------------------------------|----------------------------------------------|--|
| Content of Chapter:-                                           |                                              |  |
| 1.1 Power electronic devices.                                  |                                              |  |
| 1.2 Power transistor: construction, working principle, V-I cha | aracteristics and uses. Protection zones and |  |

- backup protection
- 1.3 IGBT: Construction, working principle. V-I characteristics and uses.
- 1.4 Concept of single electron transistor (SET) aspects of Nano-technology.

| What are the disadvantages of Field |          | e disadvantages of Field Effect Transistors? |
|-------------------------------------|----------|----------------------------------------------|
|                                     | (A)      | Higher resistance at drain                   |
| 1                                   | (B)      | Operation is slow                            |
|                                     | (C)      | Impedance at input is moderate               |
|                                     | (D)      | All as mentioned earlier                     |
| Answer                              | Option D | FOID TOOR                                    |

|        | Who intro | oduced 'First Vertical Power MOSFET'? |  |
|--------|-----------|---------------------------------------|--|
| 2      | (A)       | Drain                                 |  |
|        | (B)       | Gate                                  |  |
|        | (C)       | Base                                  |  |
|        | (D)       | Source                                |  |
| Answer | Option C  |                                       |  |
|        | -         |                                       |  |

|        | The MOSFET combines the areas of & |                                  |
|--------|------------------------------------|----------------------------------|
| 3      | (A)                                | field effect & MOS technology    |
|        | (B)                                | semiconductor & TTL              |
|        | (C)                                | mos technology & CMOS technology |
|        | (D)                                | none of the mentioned            |
| Answer | Option A                           |                                  |

|             | Which of the                               | following terminals does not belong to the MOSFET? |
|-------------|--------------------------------------------|----------------------------------------------------|
|             | (A)                                        | Drain                                              |
| 4           | (B)                                        | Gate                                               |
| 4           | (C)                                        | Base                                               |
|             | (D)                                        | Source                                             |
| Answer      | Option C                                   |                                                    |
| Explanation | MOSFET is a three terminal device D, G & S |                                                    |
| -           |                                            |                                                    |

|        | Choose the | e correct statement                       |  |
|--------|------------|-------------------------------------------|--|
| 5      | (A)        | MOSFET is a uncontrolled device           |  |
|        | (B)        | MOSFET is a voltage controlled device     |  |
|        | (C)        | MOSFET is a current controlled device     |  |
|        | (D)        | MOSFET is a temperature controlled device |  |
| Answer | Option B   |                                           |  |
|        | •          | X LY - CAN                                |  |

| Choose the correct statement |          | e correct statement                                             |
|------------------------------|----------|-----------------------------------------------------------------|
| 6                            | (A)      | MOSFET is a unipolar, voltage controlled, two terminal device   |
|                              | (B)      | MOSFET is a bipolar, current controlled, three terminal device  |
|                              | (C)      | MOSFET is a unipolar, voltage controlled, three terminal device |
|                              | (D)      | MOSFET is a bipolar, current controlled, two terminal device    |
| Answer                       | Option C |                                                                 |
|                              | •        | A PITNIE                                                        |

|        | The arro | w on the symbol of MOSFET indicates        |
|--------|----------|--------------------------------------------|
| 7      | (A)      | that it is a N-channel MOSFET              |
|        | (B)      | the direction of electrons                 |
|        | (C)      | the direction of conventional current flow |
|        | (D)      | that it is a P-channel MOSFET              |
| Answer | Option B |                                            |

|        | The contro | olling parameter in MOSFET is |
|--------|------------|-------------------------------|
| 8      | (A)        | a) Vds                        |
|        | (B)        | b) lg                         |
|        | (C)        | c) Vgs                        |
|        | (D)        | d) Is                         |
| Answer | Option B   |                               |

|        | In the inter | nal structure of a MOSFET, a parasitic BJT exists between the |
|--------|--------------|---------------------------------------------------------------|
|        | (A)          | source & gate terminals                                       |
| 9      | (B)          | source & drain terminals                                      |
|        | (C)          | drain & gate terminals                                        |
|        | (D)          | there is no parasitic BJT in MOSFET                           |
| Answer | Option B     |                                                               |

In the transfer characteristics of a MOSFET, the threshold voltage is the measure of the

| 10          | (A)              | minimum voltage to induce a n-channel/p-channel for conduction                    |
|-------------|------------------|-----------------------------------------------------------------------------------|
|             | (B)              | minimum voltage till which temperature is constant                                |
|             | (C)              | minimum voltage to turn off the device                                            |
|             | (D)              | none of the above mentioned is true                                               |
| Answer      | Option A         |                                                                                   |
| Explanation | It is the minim  | um voltage to induce a n-channel/p-channel which will allow the device to conduct |
|             | electrically thr | rough its length                                                                  |
|             |                  |                                                                                   |

|        | The output | characteristics of a MOSFET, is a plot of       |
|--------|------------|-------------------------------------------------|
| 11     | (A)        | Id as a function of Vgs with Vds as a parameter |
|        | (B)        | Id as a function of Vds with Vgs as a parameter |
|        | (C)        | Ig as a function of Vgs with Vds as a parameter |
|        | (D)        | Ig as a function of Vds with Vgs as a parameter |
| Answer | Option B   | X X X                                           |

|             | In the output characteristics of a MOSFET with low values of Vds, the value of the on-<br>state resistance is |                               |                                                      |  |
|-------------|---------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|--|
|             | (A)                                                                                                           | Vds/Ig                        |                                                      |  |
| 12          | (B)                                                                                                           | Vds/Id                        |                                                      |  |
|             | (C)                                                                                                           | 0                             |                                                      |  |
|             | (D)                                                                                                           | ∞                             |                                                      |  |
| Answer      | Option B                                                                                                      | 144                           |                                                      |  |
| Explanation | The o/p cha                                                                                                   | aracteristics Is a plot of Ic | Id verses Vds, which for low values of Vds is almost |  |
| -           | constant. H                                                                                                   | lence, the on-state resist    | stance is constant & the slop is its constant value. |  |

|        | At turn-o | n the initial delay or turn on delay is the time required for the |
|--------|-----------|-------------------------------------------------------------------|
| 13     | (A)       | input inductance to charge to the threshold value                 |
|        | (B)       | input capacitance to charge to the threshold value                |
|        | (C)       | input inductance to discharge to the threshold value              |
|        | (D)       | input capacitance to discharge to the threshold value             |
| Answer | Option    |                                                                   |

|             | Choose the c   | Choose the correct statement                                                       |  |
|-------------|----------------|------------------------------------------------------------------------------------|--|
|             | (A)            | MOSFET suffers from secondary breakdown problems                                   |  |
|             | (B)            | MOSFET has lower switching losses as compared to other devices                     |  |
| 14          | (C)            | MOSFET has high value of on-state resistance as compared to other devices          |  |
|             | (D)            | All of the mentioned                                                               |  |
| Answer      | Option B       |                                                                                    |  |
| Explanation | MOSFET has     | lower switching losses due to its unipolar nature & less turn off time. All of the |  |
|             | other statemer | nts are false.                                                                     |  |
|             |                |                                                                                    |  |

|    | Which among | g the following devices is the most suited for high frequency applications? |
|----|-------------|-----------------------------------------------------------------------------|
| 15 | (A)         | BJT                                                                         |
| 15 | (B)         | IGBT                                                                        |

|             | (C)        | MOSFET                                                   |
|-------------|------------|----------------------------------------------------------|
|             | (D)        | SCR                                                      |
| Answer      | Option C   |                                                          |
| Explanation | MOSFET has | the least switching losses among the rest of the devices |

|             | Choose the o | Choose the correct statement                                                    |  |  |
|-------------|--------------|---------------------------------------------------------------------------------|--|--|
|             | (A)          | MOSFET has a positive temperature co-efficient                                  |  |  |
| 16          | (B)          | MOSFET has a high gate circuit impedance                                        |  |  |
| 10          | (C)          | MOSFET is a voltage controlled device                                           |  |  |
|             | (D)          | All of the mentioned                                                            |  |  |
| Answer      | Option D     |                                                                                 |  |  |
| Explanation | MOSFETs are  | e voltage controlled devices. They have high gate circuit impedance and are PTC |  |  |
|             | devices      |                                                                                 |  |  |
|             |              |                                                                                 |  |  |

|             | For a MOSE   | FET Vgs=3V, Idss=5A, and Id=2A. Find the pinch of voltage Vp |
|-------------|--------------|--------------------------------------------------------------|
|             | (A)          | a) 4.08                                                      |
| 19          | (B)          | b) 8.16                                                      |
| 10          | (C)          | c) 16.32                                                     |
|             | (D)          | d) 0V                                                        |
| Answer      | Option B     |                                                              |
| Explanation | Use Id = Idd | I x [1-Vgs/Vp] <sup>2</sup> .                                |
|             |              |                                                              |

-

|        | Consider | an ideal MOSFET. If Vgs = 0V, then Id = ? |  |
|--------|----------|-------------------------------------------|--|
| 19     | (A)      | Zero                                      |  |
|        | (B)      | Maximum                                   |  |
|        | (C)      | ld(on)                                    |  |
|        | (D)      | dd    |  |
| Answer | Option A | North Contraction                         |  |

|        | How does the MOSFET differ from the JFET? |                            |
|--------|-------------------------------------------|----------------------------|
| 20     | (A)                                       | JFET has a p-n junction    |
|        | (B)                                       | They are both the same     |
|        | (C)                                       | JFET is small in size      |
|        | (D)                                       | MOSFET has a base terminal |
| Answer | Option                                    |                            |

|        | The basic advantage of the CMOS technology is that |                                      |
|--------|----------------------------------------------------|--------------------------------------|
|        | (A)                                                | It is easily available               |
| 21     | (B)                                                | It has small size                    |
| 21     | (C)                                                | It has lower power consumption       |
|        | (D)                                                | It has better switching capabilities |
| Answer | Option C                                           |                                      |

| Explanation | Complementary MOS consumes very less power as compared to all the earlier devices. |
|-------------|------------------------------------------------------------------------------------|
|             |                                                                                    |

|             | The N-channel MOSFET is considered better than the P-channel MOSFET due to its |                                        |  |
|-------------|--------------------------------------------------------------------------------|----------------------------------------|--|
|             | (A)                                                                            | low noise levels                       |  |
|             | (B)                                                                            | TTL compatibility                      |  |
| 22          | (C)                                                                            | lower input impedance                  |  |
| LL          | (D)                                                                            | faster operation                       |  |
| Answer      | Option D                                                                       |                                        |  |
| Explanation | The N-channe                                                                   | el are faster than the P-channel type. |  |
|             |                                                                                |                                        |  |

|             | IGBT possess |                                   |  |
|-------------|--------------|-----------------------------------|--|
|             | (A)          | low input impedance               |  |
| 22          | (B)          | high input impedance              |  |
| 23          | (C)          | high on-state resistance          |  |
|             | (D)          | second breakdown problems         |  |
| Answer      | Option B     |                                   |  |
| Explanation | MOSFET IGE   | T possesses high input impedance. |  |
| -           |              |                                   |  |

|             | IGBT & BJ    | T both posses                                                      |
|-------------|--------------|--------------------------------------------------------------------|
|             | (A)          | low on-state power losses                                          |
| 24          | (B)          | high on-state power losses                                         |
|             | (C)          | low switching losses                                               |
|             | (D)          | high input impedance                                               |
| Answer      | Option A     | 7970 T998 F                                                        |
| Explanation | Low on state | e power loss is one of the best parameters of both BJT & the IGBT. |
| •           |              |                                                                    |

## ZEAL POLYTECHNIC

|             | The three terminals of the IGBT are |                                                            |
|-------------|-------------------------------------|------------------------------------------------------------|
|             | (A)                                 | base, emitter & collector                                  |
| 25          | (B)                                 | gate, source & drain                                       |
| 25          | (C)                                 | gate, emitter & collector                                  |
|             | (D)                                 | base, source & drain                                       |
| Answer      | Option C                            |                                                            |
| Explanation | IGBT is a three                     | ee terminal device. It has a gate, a emitter & a collector |
| -           |                                     | -                                                          |

|    | In IGBT, the p <sup>+</sup> layer connected to the collector terminal is called as the |                 |  |
|----|----------------------------------------------------------------------------------------|-----------------|--|
| 26 | (A)                                                                                    | drift layer     |  |
| 20 | (B)                                                                                    | injection layer |  |

|             | (C)                                                                            | body layer      |
|-------------|--------------------------------------------------------------------------------|-----------------|
|             | (D)                                                                            | collector Layer |
| Answer      | Option B                                                                       |                 |
| Explanation | It is called as a injection layer, because it injects holes into the n- layer. |                 |

|             | The controlling parameter in IGBT is the |                                                                                   |  |
|-------------|------------------------------------------|-----------------------------------------------------------------------------------|--|
|             | (A)                                      | I <sub>G</sub>                                                                    |  |
| 27          | (B)                                      | V <sub>GE</sub>                                                                   |  |
| 21          | (C)                                      | Ic                                                                                |  |
|             | (D)                                      | V <sub>CE</sub>                                                                   |  |
| Answer      | Option B                                 |                                                                                   |  |
| Explanation | The controllin                           | g parameter is the gate to emitter voltage, as the device is a voltage controlled |  |
|             | device                                   |                                                                                   |  |
|             |                                          |                                                                                   |  |

|             |                | * 3 9 3 *                                                                          |
|-------------|----------------|------------------------------------------------------------------------------------|
|             | In IGBT, the   | n⁻ layer above the p⁺ layer is called as the                                       |
|             | (A)            | drift layer                                                                        |
| 20          | (B)            | injection layer                                                                    |
| 20          | (C)            | body layer                                                                         |
|             | (D)            | collector Layer                                                                    |
| Answer      | Option A       | X PITATE                                                                           |
| Explanation | It is called a | the drift layer because its thickness determines the voltage blocking capabilities |
| -           | of the device  | x + x                                                                              |
|             |                |                                                                                    |

|             | The voltage blocking capability of the IGBT is determined by the |                                                                    |
|-------------|------------------------------------------------------------------|--------------------------------------------------------------------|
| 29          | (A)                                                              | injection layer                                                    |
|             | (B)                                                              | body layer                                                         |
|             | (C)                                                              | metal used for the contacts                                        |
|             | (D)                                                              | drift layer                                                        |
| Answer      | Option D                                                         |                                                                    |
| Explanation | The drift laye                                                   | r which is a n⁻ layer determines the voltage blocking capabilities |
| -           |                                                                  |                                                                    |

|        | The controlle | ed parameter in IGBT is the |
|--------|---------------|-----------------------------|
| 30     | (A)           | I <sub>G</sub>              |
|        | (B)           | V <sub>GE</sub>             |
|        | (C)           | Ic                          |
|        | (D)           | V <sub>CE</sub>             |
| Answer | Option C      |                             |

| <b>Explanation</b> The controlling parameter is the gate to collector current. |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

|             | The structure of the IGBT is a                                                                |                                                                    |  |
|-------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| 31          | (A)                                                                                           | P-N-P structure connected by a MOS gate                            |  |
|             | (B)                                                                                           | N-N-P-P structure connected by a MOS gate                          |  |
|             | (C)                                                                                           | P-N-P-N structure connected by a MOS gate                          |  |
|             | (D)                                                                                           | N-P-N-P structure connected by a MOS gate                          |  |
| Answer      | Option C                                                                                      |                                                                    |  |
| Explanation | The IGBT is a semiconductor device with four alternating layers (P-N-P-N) that are controlled |                                                                    |  |
|             | by a metal-oxi                                                                                | de-semiconductor (MOS) gate structure without regenerative action. |  |
| 1           |                                                                                               |                                                                    |  |

|             | The major drawback of the first generation IGBTs was that, they had |                                                                                   |  |
|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| 32          | (A)                                                                 | latch-up problems                                                                 |  |
|             | (B)                                                                 | noise & secondary breakdown problems                                              |  |
|             | (C)                                                                 | sluggish operation                                                                |  |
|             | (D)                                                                 | latch-up & secondary breakdown problems                                           |  |
| Answer      | Option D                                                            |                                                                                   |  |
| Explanation | The earlier IC                                                      | GBT's had latch-up problems (device cannot turn off even after the gate signal is |  |
| -           | removed), ar                                                        | nd secondary breakdown problems (in which a localized hotspot in the device goes  |  |
|             | into thermal runaway and burns the device out at high currents).    |                                                                                   |  |
|             |                                                                     |                                                                                   |  |
|             |                                                                     |                                                                                   |  |

|                              | * PI               | NE                   |                  |
|------------------------------|--------------------|----------------------|------------------|
| Droporod Dv                  | Verified By        | Re-Verified By       | Approved By      |
| Prepared by<br>Mr. D.V.ketro | Mr. P.A.MALI       | Mr. Patil S. S.      | Mr. Mandale R.K. |
| IVII. R.V.Kalre              | Module Coordinator | Academic Coordinator | HOD EE           |



NARHE | PUNE -41 | INDIA



### DEPARTMENT OF ELECTRICAL ENGINEERING

#### 02 – Thyristor family Devices

Marks:- 16

#### Content of Chapter:-

2.1.SCR construction, two transistor analogy, types, of working and vi characteristics

2.2 SCR mountings and cooling.

2.3 Types of thyristors: SCR ,GTO, UJT,PUT,DIAC,and TRAC

2.4 Thyristor Family Devices :symbol, construction ,operating principle

2.5 protection circuit over- voltage ,over current ,Snuber,Crowbar

|             | A thyristor | (SCR) is a                         | 10 Ar                          |
|-------------|-------------|------------------------------------|--------------------------------|
|             | (A)         | P-N-P device                       |                                |
| 1           | (B)         | N-P-N device                       |                                |
|             | (C)         | P-N-P-N device                     |                                |
|             | (D)         | P-N device                         |                                |
| Answer      | Option C    | 4                                  |                                |
| Explanation | An SCR (sil | icon controlled rectifier) is a fo | our layer p-n-p-n type device. |
| 1           |             |                                    |                                |

|             | Which terminal does not belong to the SCR?                          |           |  |
|-------------|---------------------------------------------------------------------|-----------|--|
|             | (A)                                                                 | Anode     |  |
| 2           | (B)                                                                 | Gate      |  |
| 2           | (C)                                                                 | Base      |  |
|             | (D)                                                                 | Cathode   |  |
| Answer      | Option C                                                            | 6510-1398 |  |
| Explanation | The SCR is having three terminals viz. anode, cathode and the gate. |           |  |
|             |                                                                     |           |  |

|             | An SCR is a   | TTAL DOLVTROUND                                       |
|-------------|---------------|-------------------------------------------------------|
|             | (A)           | four layer, four junction device                      |
| 2           | (B)           | four layer, three junction device                     |
| 5           | (C)           | four layer, two junction device                       |
|             | (D)           | three layer, and single junction device               |
| Answer      | Option B      |                                                       |
| Explanation | SCR is a four | layer p-n-p-n device which forms three p-n junctions. |
| -           |               |                                                       |

|        | Choose the false statement. |                                             |
|--------|-----------------------------|---------------------------------------------|
| 4      | (A)                         | SCR is a bidirectional device               |
|        | (B)                         | SCR is a controlled device                  |
|        | (C)                         | In SCR the gate is the controlling terminal |
|        | (D)                         | SCR are used for high-power applications    |
| Answer | Option A                    |                                             |

| Exp | olanation | It is a unidirectional device | , current only f | flows from anode to cathode. |
|-----|-----------|-------------------------------|------------------|------------------------------|
|-----|-----------|-------------------------------|------------------|------------------------------|

|             | . In the SCR structure the gate terminal is located                                            |                                         |  |
|-------------|------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| 5           | (A)                                                                                            | near the anode terminal                 |  |
|             | (B)                                                                                            | near the cathode terminal               |  |
|             | (C)                                                                                            | in between the anode & cathode terminal |  |
|             | (D)                                                                                            | none of the mentioned                   |  |
| Answer      | Option B                                                                                       |                                         |  |
| Explanation | The gate is located near the cathode, because it allows fast turning on of the device when the |                                         |  |
|             | gate signal is applied by forward basing the second junction                                   |                                         |  |

|             | The static V                                                             | -I curve for the SCR is plotted for                                                 |  |
|-------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|             | (A)                                                                      | la (anode current) vslg (gate current), Va (anode – cathode voltage) as a parameter |  |
| 6           | (B)                                                                      | lavsVa with Ig as a parameter                                                       |  |
|             | (C)                                                                      | Vavslg with la as a parameter                                                       |  |
|             | (D)                                                                      | Igvs Vg with Ia as a parameter                                                      |  |
| Answer      | Option B                                                                 |                                                                                     |  |
| Explanation | The curve is plotted for lavsVa for different values of gate current lg. |                                                                                     |  |
|             |                                                                          |                                                                                     |  |

|             | If the cathor<br>applied ther                                                                    | de of an SCR is made positive with respect to the anode & no gate current is<br>າ |  |
|-------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
|             | (A)                                                                                              | all the junctions are reversed biased                                             |  |
| 7           | (B)                                                                                              | all the junctions are forward biased                                              |  |
|             | (C)                                                                                              | c) only the middle junction is forward biased                                     |  |
|             | (D)                                                                                              | only the middle junction is reversed biased                                       |  |
| Answer      | Option C                                                                                         |                                                                                   |  |
| Explanation | The device is in the reverse blocking state (3rd quadrant) & only the middle junction is forward |                                                                                   |  |
| -           | biased whereas other two are reversed biased.                                                    |                                                                                   |  |

|             | For an SCR i                                                                               | n the reverse blocking mode, (practically)  |  |
|-------------|--------------------------------------------------------------------------------------------|---------------------------------------------|--|
| 0           | (A)                                                                                        | leakage current does not flow               |  |
|             | (B)                                                                                        | leakage current flows from anode to cathode |  |
| o           | (C)                                                                                        | leakage current flows from cathode to anode |  |
|             | (D)                                                                                        | leakage current flows from gate to anode    |  |
| Answer      | Option C                                                                                   |                                             |  |
| Explanation | Explanation: In the reverse blocking mode, the gate current is zero & a reverse voltage is |                                             |  |
|             | applied at the cathode-anode                                                               |                                             |  |

| 9      | (A)      | reverse blocking mode   |
|--------|----------|-------------------------|
|        | (B)      | reverse conduction mode |
|        | (C)      | forward blocking mode   |
|        | (D)      | forward conduction mode |
| Answer | Option C |                         |

| Explanation | The SCR is in the forward blocking mode with its top and bottom junctions forward biased and |
|-------------|----------------------------------------------------------------------------------------------|
|             | the middle junction reversed biased                                                          |

|             | For an SCR   | t in the forward blocking mode (practically)                                         |
|-------------|--------------|--------------------------------------------------------------------------------------|
| 10          | (A)          | leakage current does not flow                                                        |
|             | (B)          | leakage current flows from anode to cathode                                          |
|             | (C)          | leakage current flows from cathode to anode                                          |
|             | (D)          | leakage current flows from gate to anode                                             |
| Answer      | Option B     |                                                                                      |
| Explanation | In the forwa | rd blocking mode, the gate current is zero & only the middle J2 junction is reversed |
| -           | biased       |                                                                                      |

|             | The forward break over voltage is the |                                                                                                                    |
|-------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 11          | (A)                                   | anode-cathode voltage at which conduction starts with gate signal applied                                          |
|             | (B)                                   | anode-cathode voltage at which conduction starts with no gate signal applied                                       |
|             | (C)                                   | gate voltage at which conduction starts with no anode-cathode voltage                                              |
|             | (D)                                   | gate voltage at which conduction starts with anode-cathode voltage applied                                         |
| Answer      | Option A                              |                                                                                                                    |
| Explanation | It is the forw<br>pushes the c        | ard voltage at which the middle junction breaks down without any gate signal and device into the conducting state. |
|             |                                       | * 5                                                                                                                |

|             | For a forwar<br>increased                        | d conducting SCR device, as the forward anode to cathode voltage is                                                                                                        |
|-------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (A)                                              | the device turns on at higher values of gate current                                                                                                                       |
| 12          | (B)                                              | the device turns on at lower values of gate current                                                                                                                        |
|             | (C)                                              | the forward impedance of the device goes on increasing                                                                                                                     |
|             | (D)                                              | the forward impedance of the device goes on decreasing                                                                                                                     |
| Answer      | Option B                                         |                                                                                                                                                                            |
| Explanation | Higher the va<br>Also, the forw<br>temperature i | lue of anode-cathode forward voltage, lower the gate requirements of the device.<br>/ard resistance of the device is always constant as long as the junction<br>s constant |

|             | A thyristor<br>by | can be bought from the forward conduction mode to forward blocking mode |
|-------------|-------------------|-------------------------------------------------------------------------|
|             | (A)               | the dv/dt triggering method                                             |
| 13          | (B)               | applying a negative gate signal                                         |
|             | (C)               | applying a positive gate signal                                         |
|             | (D)               | applying a reverse voltage across anode-cathode terminals               |
| Answer      | Option D          |                                                                         |
| Explanation | a) & c) are u     | used to turn on the device; b) will damage the SCR.                     |

|    | Usually | the forward voltage triggering method is not used to turn-on the SCR because |
|----|---------|------------------------------------------------------------------------------|
|    | (A)     | it increases losses                                                          |
| 14 | (B)     | it causes noise production                                                   |
| 14 | (C)     | it may damage the junction & destroy the device                              |
|    | (D)     | relatively it's an inefficient method                                        |

| Answer      | Option C                                                                                                                                                                                                              |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Explanation | In forward voltage triggering the middle junction breaks down without any gate signal and pushes the device into the conducting state. This method can permanently damage the J2 junction and make the device useless |

|             | (A)                                                  | gate triggering method                               |
|-------------|------------------------------------------------------|------------------------------------------------------|
| 15          | (B)                                                  | dv/dt triggering method                              |
|             | (C)                                                  | forward voltage triggering method                    |
|             | (D)                                                  | temperature triggering method                        |
| Answer      | Option A                                             |                                                      |
| Explanation | d) & b) are ur                                       | nreliable methods, c) can permanently damage the SCR |
| -           | Gate triggering is simple, reliable & most efficient |                                                      |

|             | The forwar   | d break over voltage is maximum when                                                 |
|-------------|--------------|--------------------------------------------------------------------------------------|
| 16          | (A)          | Gate current = ∞                                                                     |
|             | (B)          | Gate current = 0                                                                     |
|             | (C)          | Gate current = -∞                                                                    |
|             | (D)          | t is independent of gate current                                                     |
| Answer      | Option A     |                                                                                      |
| Explanation | Higher the \ | value of anode-cathode forward voltage, lower the gate requirements of the device.   |
|             |              | value of anote-califorde forward voltage, lower the gate requirements of the device. |

|             | For the SCF    | R to remain in the ON (conducting) state                                            |
|-------------|----------------|-------------------------------------------------------------------------------------|
|             | (A)            | gate signal is continuously required                                                |
| 17          | (B)            | no continuous gate signal is required                                               |
|             | (C)            | no forward anode-cathode voltage is required                                        |
|             | (D)            | negative gate signal is continuously required                                       |
| Answer      | Option B       | 000                                                                                 |
| Explanation | Unlike the tra | ansistor devices, once the SCR is turned on by the gate terminal, the gate terminal |
|             | losses its co  | ntrol over the device                                                               |

|             | The value of the gate sigr | anode current required to maintain the conduction of an SCR even though<br>nal is removed is called as the |
|-------------|----------------------------|------------------------------------------------------------------------------------------------------------|
|             | (A)                        | holding current                                                                                            |
| 18          | (B)                        | latching current                                                                                           |
|             | (C)                        | switching current                                                                                          |
|             | (D)                        | peak anode current                                                                                         |
| Answer      | Option A                   |                                                                                                            |
| Explanation | It is the minim            | num anode current value required to maintain the conduction of an SCR even                                 |
|             | though the ga              | te signal is removed. It is a very important parameter when employing an SCR in                            |
|             | any circuit                |                                                                                                            |

| In the reverse blocking mode the middle junction ( ), has the characteristics of that of a |
|--------------------------------------------------------------------------------------------|
| In the reverse blocking mode the middle junction (52) has the characteristics of that of a |
|                                                                                            |

| 19          | (A)                                                                                                  | transistor            |
|-------------|------------------------------------------------------------------------------------------------------|-----------------------|
|             | (B)                                                                                                  | capacitor             |
|             | (C)                                                                                                  | inductor              |
|             | (D)                                                                                                  | none of the mentioned |
| Answer      | Option B                                                                                             |                       |
| Explanation | It is like a capacitor, as the dv/dt voltage triggering turns on the device. The charging current is |                       |
|             | given by, $I_C$ =                                                                                    | CjdVa/dt.             |

|             | area                                                                                       | e semiconductor thyristor devices which can be turned-on by light of wavelengths. |
|-------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|             | (A)                                                                                        | LGTOs                                                                             |
| 20          | (B)                                                                                        | LASERs                                                                            |
|             | (C)                                                                                        | MASERs                                                                            |
|             | (D)                                                                                        | LASCRs                                                                            |
| Answer      | Option D                                                                                   | X ^ X                                                                             |
| Explanation | LASCR stands for light activated SCRs, which can be turned on in made to conduct by firing |                                                                                   |
|             | appropriate light pulses at its gate region                                                |                                                                                   |

|             | During the t  | ransition time or turn-on time                                                     |
|-------------|---------------|------------------------------------------------------------------------------------|
|             | (A)           | The forward anode voltage decreases from 90 % to 10 % & the anode current          |
|             |               | also decreases from 90 to 10 % of the initial value                                |
|             | (B)           | The forward anode voltage increases from 10 % to 90 % & the anode current          |
| 21          |               | also increases from 10 % to 90 % of the initial value                              |
|             | (C)           | The forward anode voltage decreases from 90 % to 10 % & the anode current          |
|             |               | increases from 10 % to 90 % of the initial value                                   |
|             | (D)           | The forward anode voltage increases from 10 % to 90 % & the anode current          |
|             |               | decreases from 90% to 10% of the initial value                                     |
| Answer      | Option C      |                                                                                    |
| Explanation | During the tu | rn on time, the voltage across the SCR is going down and the current through it is |
|             | slowly rising | as it is going into the conduction mode                                            |

|        | For an SCR the total turn-on time consists of |                                                  |
|--------|-----------------------------------------------|--------------------------------------------------|
| 22     | (A)                                           | anode current flows only near the gate           |
|        | (B)                                           | anode current rises from zero to very high value |
|        | (C)                                           | losses are maximum                               |
|        | (D)                                           | anode to cathode voltage is zero                 |
| Answer | Option A                                      |                                                  |

|             | The minimum value of anode current below which it must fall to completely turn-off the device is called as the |                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|             | (A)                                                                                                            | holding current value                                                              |
| 23          | (B)                                                                                                            | latching current value                                                             |
|             | (C)                                                                                                            | switching current value                                                            |
|             | (D)                                                                                                            | peak anode current value                                                           |
| Answer      | Option A                                                                                                       |                                                                                    |
| Explanation | The device wi                                                                                                  | Il remain in the conducting state unless the anode current falls below the holding |
|             | current value.                                                                                                 |                                                                                    |

|             | For an SCR triggering methods are                                        |                          |
|-------------|--------------------------------------------------------------------------|--------------------------|
|             | (A)                                                                      | all                      |
| 24          | (B)                                                                      | anode to gate triggering |
| 24          | (C)                                                                      | thermal triggering       |
|             | (D)                                                                      | dv/dt triggering         |
| Answer      | Option A                                                                 |                          |
| Explanation | The losses are maximum during the rise time because both Ia&Va are high. |                          |

|             | The latching                                                                                      | current is than the holding current                                               |  |
|-------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| 25          | (A)                                                                                               | lower                                                                             |  |
|             | (B)                                                                                               | higher                                                                            |  |
|             | (C)                                                                                               | same as                                                                           |  |
|             | (D)                                                                                               | negative of                                                                       |  |
| Answer      | Option B                                                                                          | X SALLON T                                                                        |  |
| Explanation | The latching current is the value of current on which the device will remain in the on state even |                                                                                   |  |
|             | after removal                                                                                     | of the gate signal. Whereas, the holding current is the threshold above which the |  |
|             | device will wo                                                                                    | ork.                                                                              |  |

|             | For effectiv                                                                                | e turning off of the SCR after the anode current has reached zero value, |
|-------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 26          | (A)                                                                                         | chargers are injected by applying reverse anode-cathode voltage          |
|             | (B)                                                                                         | chargers are removed by applying reverse anode-cathode voltage           |
|             | (C)                                                                                         | chargers are injected by applying gate signal                            |
|             | (D)                                                                                         | chargers are removed by applying gate signal                             |
| Answer      | Option B                                                                                    |                                                                          |
| Explanation | To enable the device to regain its reverse blocking capabilities, the stored charges in the |                                                                          |
|             | junctions of the SCR must be removed                                                        |                                                                          |

|             | To avoid commutation failure                                                                              |                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 27          | (A)                                                                                                       | circuit turn-off time must be greater than the thyristor turn-off time |
|             | (B)                                                                                                       | circuit turn-off time must be lesser than the thyristor turn-off time  |
|             | (C)                                                                                                       | circuit turn-off time must be equal to the thyristor turn-off time     |
|             | (D)                                                                                                       | none of the above mentioned                                            |
| Answer      | Option A                                                                                                  |                                                                        |
| Explanation | If the thyristor turn off time is more than the circuit turn off time, the circuit will be turned off and |                                                                        |
| _           | the thyristor will keep conducting, which is not at all desirable.                                        |                                                                        |

|        | The gate characteristics of thyristor is a plot of |                                                             |
|--------|----------------------------------------------------|-------------------------------------------------------------|
| 28     | (A)                                                | V <sub>g</sub> on the X-axis &I <sub>g</sub> on the Y-axis  |
|        | (B)                                                | I <sub>g</sub> on the X-axis & V <sub>g</sub> on the Y-axis |
|        | (C)                                                | V <sub>a</sub> on the X-axis &I <sub>g</sub> on the Y-axis  |
|        | (D)                                                | I <sub>g</sub> on the X-axis &V <sub>a</sub> on the Y-axis  |
| Answer | Option B                                           |                                                             |

| Explanation | It is the gate current versus the gate voltage plot and gives the minimum and maximum values |
|-------------|----------------------------------------------------------------------------------------------|
|             | of gate parameters                                                                           |

|             | The area under the curve of the gate characteristics of thyristor gives the              |                                                                             |
|-------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 29          | (A)                                                                                      | total average gate current                                                  |
|             | (B)                                                                                      | total average gate voltage                                                  |
|             | (C)                                                                                      | total average gate impedance                                                |
|             | (D)                                                                                      | total average gate power dissipation                                        |
| Answer      | Option D                                                                                 |                                                                             |
| Explanation | As the gate characteristics is a plot of Ig vs. Vg consisting of two curves one for the  |                                                                             |
|             | maximumvalues & other for the minimum the area between them gives the total average gate |                                                                             |
|             | power dissipa                                                                            | tion. (A very important parameter in designing of the triggering circuits). |

| A tangent of the                            | drawn from the Y-axis to the Pavg on the gate characteristics gives the value  |  |
|---------------------------------------------|--------------------------------------------------------------------------------|--|
| (A)                                         | maximum value of gate-source resistance                                        |  |
| (B)                                         | minimum value of gate-source resistance                                        |  |
| (C)                                         | maximum value of gate-source power                                             |  |
| (D)                                         | minimum value of gate-source power                                             |  |
| Option B                                    |                                                                                |  |
| It gives the min gate to source resistance. |                                                                                |  |
|                                             | A tangent of<br>of the<br>(A)<br>(B)<br>(C)<br>(D)<br>Option B<br>It gives the |  |

|             | Higher the magnitude of the gate pulse                                                    |                                                    |  |
|-------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| 31          | (A)                                                                                       | lesser is the time required to inject the charges  |  |
|             | (B)                                                                                       | greater is the time required to inject the charges |  |
|             | (C)                                                                                       | greater is the value of anode current              |  |
|             | (D)                                                                                       | lesser is the value of anode current               |  |
| Answer      | Option A                                                                                  |                                                    |  |
| Explanation | Lesser time is required to inject the charges & turn on the device with higher gate pulse |                                                    |  |
|             | magnitude.                                                                                |                                                    |  |

|             | The average gate power dissipation for an SCR is 0.5 Watts the voltage applied to the gate is Vg = 10 V. What is the maximum value of current lg for safe operation? |                                                                      |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
|             | (A)                                                                                                                                                                  | 0.25 A                                                               |  |  |
| 32          | (B)                                                                                                                                                                  | 10 A                                                                 |  |  |
|             | (C)                                                                                                                                                                  | 0.05 A                                                               |  |  |
|             | (D)                                                                                                                                                                  | 0.1 A                                                                |  |  |
| Answer      | Option C                                                                                                                                                             |                                                                      |  |  |
| Explanation | Vg.lg = 0.5 W                                                                                                                                                        | , the power dissipation mustn't exceed the average power dissipation |  |  |

|    | For an SCR, the gate-cathode characteristic has a slop of 130. The gate power dissipation is 0.5 watts. Find Ig |        |  |
|----|-----------------------------------------------------------------------------------------------------------------|--------|--|
| 33 | (A)                                                                                                             | 0.62 A |  |
|    | (B)                                                                                                             | 620 mA |  |

|             | (C)                 | 62 mA        |  |
|-------------|---------------------|--------------|--|
|             | (D)                 | 6.2 mA       |  |
| Answer      | Option C            |              |  |
| Explanation | Vg/lg = 130 (Given) |              |  |
|             | Vg.lg = 0.5 wa      | atts (Given) |  |

|             | Use both the<br>obtained by                                                                        | given data & find the gate current.he two transistor model of the SCR can |  |
|-------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
|             | (A)                                                                                                | bisecting the SCR vertically                                              |  |
| 34          | (B)                                                                                                | bisecting the SCR horizontally                                            |  |
|             | (C)                                                                                                | bisecting the SCRs top two & bottom two layers                            |  |
|             | (D)                                                                                                | bisecting the SCRs middle two layers                                      |  |
| Answer      | Option D                                                                                           |                                                                           |  |
| Explanation | The two transistor model consists of p-n-p and n-p-n transistors, of which the middle n-p layer is |                                                                           |  |
| _           | common in both the transistors.                                                                    |                                                                           |  |

|             | . Latching current for an SCR is 100 mA, DC source of 200 V is also connected from the SCR to the L load. Compute the minimum width of the gate pulse required to turn on the device. Take L = 0.2 H. |          |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| 25          | (A)                                                                                                                                                                                                   | 50 µsec  |  |  |
|             | (B)                                                                                                                                                                                                   | 100 µsec |  |  |
|             | (C)                                                                                                                                                                                                   | 150 µsec |  |  |
|             | (D)                                                                                                                                                                                                   | 200 µsec |  |  |
| Answer      | Option C                                                                                                                                                                                              | Option C |  |  |
| Explanation | For L load, E = L di/dt I = E/L t                                                                                                                                                                     |          |  |  |
| -           | Therefore, 0.100 = 200t/0.2                                                                                                                                                                           |          |  |  |
|             | T = 100 µsec.                                                                                                                                                                                         |          |  |  |

|             | From the two transistors (T1 & T2) analogy of SCR, the total anode current of SCR in the equivalent circuit. |                                                                                      |  |
|-------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|             | (A)                                                                                                          | the sum of both the base currents                                                    |  |
| 36          | (B)                                                                                                          | the sum of both the collector current                                                |  |
|             | (C)                                                                                                          | the sum of base current of T1 & collector current of T2                              |  |
|             | (D)                                                                                                          | the sum of base current of T2 & collector current of T1                              |  |
| Answer      | Option C                                                                                                     |                                                                                      |  |
| Explanation | The sum of                                                                                                   | both the collector currents of T1 and T2 forms the total anode current of SCR. Refer |  |
|             | the model.                                                                                                   |                                                                                      |  |

| Prepared By     | Verified By        | Re-Verified By       | Approved By      |
|-----------------|--------------------|----------------------|------------------|
|                 | Mr. P.A.MALI       | Mr. Patil S. S.      | Mr. Mandale R.K. |
| IVII. R.V.Kalre | Module Coordinator | Academic Coordinator | HOD EE           |



#### ZEAL EDUCATION SOCIETY'S ZEAL POLYTECHNIC,PUNE NARHE | PUNE -41 | INDIA DEPARTMENT OF ELECTRICAL ENGINEERING



#### 03 – Turn on and Turn of Methods of Thyristor

Marks:-14

#### Content of Chapter:-

3.1SCR Turn-ON methods: High Voltage thermal triggering, Illumination triggering, dv/dt triggering,

- 3.2Gate triggering. Gate trigger circuits Resistance and Resistance-Capacitance circuits.
- 3.3 SCR triggering using UJT, PUT: Relaxation Oscillator and Synchronized UJT circuit.
- 3.4 Pulse transformer and opto-coupler based triggering.
- 3.5 SCR Turn-OFF methods: Class A-Series resonant commutation circuit, Class BShunt
- 3.6 Resonant commutation circuit, Class C-Complimentary Symmetry commutation circuit, Class D -Auxiliary commutation, Class E- External pulse commutation. Class F- Line or natural commutation

|                       | . The thyris              | tor turn-off requires that the anode current                                    |
|-----------------------|---------------------------|---------------------------------------------------------------------------------|
|                       | (A)                       | falls below the holding current                                                 |
| 1                     | (B)                       | falls below the latching current                                                |
| •                     | (C)                       | rises above the holding current                                                 |
|                       | (D)                       | rises above the latching current                                                |
| Answer                | Option A                  |                                                                                 |
| Explanation           | For effective             | turn-off of the SCR the anode current must fall below the holding current value |
| Answer<br>Explanation | Option A<br>For effective | turn-off of the SCR the anode current must fall below the holding current value |

|             | In case of c  | lass A type commutation or load commutation with low value of R load the        |
|-------------|---------------|---------------------------------------------------------------------------------|
| 2           | (A)           | L is connected across R                                                         |
|             | (B)           | L-C is connected across R                                                       |
|             | (C)           | L is connected in series with R                                                 |
|             | (D)           | L-C is connected in series with R                                               |
| Answer      | Option D      |                                                                                 |
| Explanation | In case of Cl | ass A commutation the requirement is that the circuit should be an under-damped |
| -           | RLC circuit   |                                                                                 |

|             | The class A commutation or load commutation is possible in case of                            |                             |  |
|-------------|-----------------------------------------------------------------------------------------------|-----------------------------|--|
| 2           | (A)                                                                                           | dc circuits only            |  |
|             | (B)                                                                                           | ac circuits only            |  |
| 5           | (C)                                                                                           | both DC and AC circuits     |  |
|             | (D)                                                                                           | none of the above mentioned |  |
| Answer      | Option A                                                                                      |                             |  |
| Explanation | The nature of the circuit should be such that when energized from the source, current must aa |                             |  |
|             | natural tendency to decay to zero for load commutation to occur in a SCR circuit.             |                             |  |

| 4 | An SCR is connected in series with L = 5 mH and C = 20 $\mu$ F. Find the resonant frequency of the circuit. |            |
|---|-------------------------------------------------------------------------------------------------------------|------------|
| 4 | (A)                                                                                                         | 2569 rad/s |

|             | (B)       | 3162 rad/s |
|-------------|-----------|------------|
|             | (C)       | 2400 rad/s |
|             | (D)       | 7889 rad/s |
| Answer      | Option B  |            |
| Explanation | ω = 1/√LC |            |
|             |           |            |

|             | The type of commutation when the load is commutated by transferring its load cu another incoming thyristor is |                                      |
|-------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|
|             | (A)                                                                                                           | class A or load commutation          |
| 5           | (B)                                                                                                           | class B or resonant commutation      |
|             | (C)                                                                                                           | class C or complementary commutation |
|             | (D)                                                                                                           | class D or impulse commutation       |
| Answer      | Option C                                                                                                      |                                      |
| Explanation | Explanation: In the Class C type commutation also called as complementary commutation the                     |                                      |
|             | load is commutated by transferring the current th another device.                                             |                                      |

|             | The natural reversal of ac supply voltage commutates the SCR in case of |                                 |
|-------------|-------------------------------------------------------------------------|---------------------------------|
|             | (A)                                                                     | forced commutation              |
| 6           | (B)                                                                     | only line commutation           |
| 0           | (C)                                                                     | only natural commutation        |
|             | (D)                                                                     | both line & natural commutation |
| Answer      | Option D                                                                |                                 |
| Explanation | Both line and natural commutations are used in converters.              |                                 |
|             |                                                                         |                                 |

|             |                                                                                                | Commutation technique is commonly employed in series inverters. |
|-------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 7           | (A)                                                                                            | Line                                                            |
|             | (B)                                                                                            | load                                                            |
|             | (C)                                                                                            | forced                                                          |
|             | (D)                                                                                            | external-pulse                                                  |
| Answer      | Option B                                                                                       |                                                                 |
| Explanation | Load commutation is used in inverter in which L and C are connected in series with the load or |                                                                 |
|             | C in parallel                                                                                  | with the load such that overall load circuit is under damped.   |

|             | The GTO can be turned off |                                                                                   |
|-------------|---------------------------|-----------------------------------------------------------------------------------|
| 8           | (A)                       | by a positive gate pulse                                                          |
|             | (B)                       | by a negative gate pulse                                                          |
|             | (C)                       | by a negative anode-cathode voltage                                               |
|             | (D)                       | by removing the gate pulse                                                        |
| Answer      | Option B                  |                                                                                   |
| Explanation | Explanation:              | The GTO can be turned off by applying a negative gate pulse to the gate terminal. |
|             |                           |                                                                                   |

|   | With the anode positive with respect to the cathode & the gate circuit open, the SCR is said to be in the |                         |
|---|-----------------------------------------------------------------------------------------------------------|-------------------------|
| 9 | (A)                                                                                                       | reverse blocking mode   |
|   | (B)                                                                                                       | reverse conduction mode |

|             | (C)                                                                                          | (C) forward blocking mode |  |
|-------------|----------------------------------------------------------------------------------------------|---------------------------|--|
|             | (D)                                                                                          | forward conduction mode   |  |
| Answer      | Option C                                                                                     |                           |  |
| Explanation | The SCR is in the forward blocking mode with its top and bottom junctions forward biased and |                           |  |
|             | the middle junction reversed biased                                                          |                           |  |

|             | For an SCR | in the forward blocking mode (practically)  |
|-------------|------------|---------------------------------------------|
|             | (A)        | leakage current does not flow               |
| 10          | (B)        | leakage current flows from anode to cathode |
| 10          | (C)        | leakage current flows from cathode to anode |
|             | (D)        | leakage current flows from gate to anode    |
| Answer      | Option A   |                                             |
| Explanation |            |                                             |
|             |            |                                             |

|        | MOSFET is | Y ATION *                             |
|--------|-----------|---------------------------------------|
|        | (A)       | Uncontrolled device                   |
| 11     | (B)       | Current controlled device             |
|        | (C)       | Voltage controlled device             |
|        | (D)       | Temperature controlled device         |
| Answer | Option C  | × × × × × × × × × × × × × × × × × × × |
|        |           |                                       |

|        | SCR is a | trigged device      |
|--------|----------|---------------------|
| 12     | (A)      | Voltage             |
|        | (B)      | Current             |
|        | (C)      | Voltage and Current |
|        | (D)      | None of these       |
| Answer | Option B |                     |
|        |          | 25TU=1998           |

|        | Choose the | e false statement.                          |
|--------|------------|---------------------------------------------|
| 13     | (A)        | SCR is a bidirectional device               |
| 10     | (B)        | SCR is a controlled device                  |
|        | (C)        | In SCR the gate is the controlling terminal |
|        | (D)        | SCR are used for high – power applications  |
| Answer | Option A   |                                             |

|        | In the SCR s | structure the gate terminal is located  |
|--------|--------------|-----------------------------------------|
| 14     | (A)          | Near the anode terminal                 |
|        | (B)          | Near the cathode terminal               |
|        | (C)          | In between the anode & cathode terminal |
|        | (D)          | None of these                           |
| Answer | Option B     |                                         |

|        | The static V | <ul> <li>I curve for the SCR is plotted for.</li> </ul>                              |
|--------|--------------|--------------------------------------------------------------------------------------|
|        | (A)          | la (anode current) vs lg (gate current), Va (anode – cathode voltage) as a parameter |
| 15     | (B)          | Ia vs Va with Ig as a parameter                                                      |
|        | (C)          | Va vs lg with la as a parameter                                                      |
|        | (D)          | Ig vs Vg with Ia as a parameter                                                      |
| Answer | Option B     |                                                                                      |

|        | For an SC | CR in the reverse blocking mode, (practically) |
|--------|-----------|------------------------------------------------|
| 16     | (A)       | Leakage current does not flow                  |
|        | (B)       | Leakage current flows from anode to cathode    |
|        | (C)       | Leakage current flows from cathode to anode    |
|        | (D)       | Leakage current flows from gate to anode       |
| Answer | Option C  |                                                |
|        | ł         | X X X X X X X X X X X X X X X X X X X          |
|        |           |                                                |

|        | The forwar | d break over voltage is the                                                    |
|--------|------------|--------------------------------------------------------------------------------|
|        | (A)        | Anode – cathode voltage at which conduction starts with gate signal apply      |
| 17     | (B)        | Anode – cathode voltage at which conduction starts with no gate signal applied |
|        | (C)        | Gate voltage at which conduction starts with no anode – cathode voltage        |
|        | (D)        | Gate voltage at which conduction starts with anode – cathode voltage applied   |
| Answer | Option B   |                                                                                |

|        |              | * PUNE                                                                        |
|--------|--------------|-------------------------------------------------------------------------------|
|        | For a forwar | d conducting SCR device, as the forward anode to cathode voltage is increased |
| 18     | (A)          | The device turns on at higher values of gate current                          |
|        | (B)          | The device turns on at lower values of gate current                           |
|        | (C)          | The forward impedance of the device goes on increasing                        |
|        | (D)          | The forward impedance of the device goes on decreasing                        |
| Answer | Option B     |                                                                               |

|        | A thyristor | can be bought from the forward conduction mode to forward blocking mode |  |
|--------|-------------|-------------------------------------------------------------------------|--|
| 19     | (A)         | The dv / dt triggering method                                           |  |
| 15     | (B)         | Applying a negative gate signal                                         |  |
|        | (C)         | Applying a positive gate signal                                         |  |
|        | (D)         | Applying a reverse voltage across anode – cathode terminals             |  |
| Answer | Option D    |                                                                         |  |
|        | Among the   | following, the most suitable method to turn on the SCR device is the    |  |
|        | (A)         | Gate triggering method                                                  |  |
| 20     | (B)         | dv / dt triggering method                                               |  |
| 20     | (C)         | Forward voltage triggering method                                       |  |
|        | (D)         | Temperature triggering method                                           |  |
| Answer | Option A    |                                                                         |  |

|        | The forward | I break over voltage is maximum   |
|--------|-------------|-----------------------------------|
| 21     | (A)         | Gate current = $\infty$           |
|        | (B)         | Gate current = 0                  |
|        | (C)         | Gate current = $-\infty$          |
|        | (D)         | It is independent of gate current |
| Answer | Option B    |                                   |

|        | The valu<br>gate sigr | e of anode current required to maintain the conduction of an SCR even though the nal is removed is called as the |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------|
| 22     | (A)                   | Holding current                                                                                                  |
|        | (B)                   | Latching current                                                                                                 |
|        | (C)                   | Switching current                                                                                                |
|        | (D)                   | Peak anode current                                                                                               |
| Answer | Option B              | X CALLON T                                                                                                       |
|        | ·                     |                                                                                                                  |

|        | During the | transition time or turn – on time                                                                                           |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------|
|        | (A)        | The forward anode voltage decreases from 90% to 10% & the anode current also decreases from 90 to 10% of the initial value  |
| 23     | (B)        | The forward anode voltage increases from 10% to 90% & the anode current also increases from 10% to 90% of the initial value |
|        | (C)        | The forward anode voltage decreases from 90% to 10% & the anode current increases from 10% to 90% of the initial value      |
|        | (D)        | The forward anode voltage increases from 10% to 90% & the anode current decreases from 90% to 10% of the initial value      |
| Answer | Option C   |                                                                                                                             |

|        | If firing ang | gle in an SCR circuit is increased, the output                              |  |
|--------|---------------|-----------------------------------------------------------------------------|--|
| 24     | (A)           | Remains same                                                                |  |
| 24     | (B)           | Decreased                                                                   |  |
|        | (C)           | Increased                                                                   |  |
|        | (D)           | None of these                                                               |  |
| Answer | Option B      |                                                                             |  |
|        | The forwar    | rd dv / dt rating of an SCR                                                 |  |
| 25     | (A)           | Increasing with increase in the junction temperature                        |  |
| 20     | (B)           | Decreases with increase in the junction temperature                         |  |
|        | (C)           | Increases with decrease in the rms value of forward anode – cathode voltage |  |
|        | (D)           | Decreases with decrease in the rms value of forward anode – cathode voltage |  |
| Answer | Option A      |                                                                             |  |

| SCRs are connected in parallel to fulfil the demand |     | nnected in parallel to fulfil the demand |
|-----------------------------------------------------|-----|------------------------------------------|
| 26                                                  | (A) | High voltage                             |

|        | (B)      | High current |
|--------|----------|--------------|
|        | (C)      | Size         |
|        | (D)      | Efficiency   |
| Answer | Option B |              |

|        | For a string voltage of 3300 V, let there be six series connected SCRs each of voltage 600 V.<br>Then the string efficiency is |        |
|--------|--------------------------------------------------------------------------------------------------------------------------------|--------|
|        | (A)                                                                                                                            | 99.36% |
| 27     | (B)                                                                                                                            | 91.7%  |
|        | (C)                                                                                                                            | 98.54% |
|        | (D)                                                                                                                            | 96%    |
| Answer | Option B                                                                                                                       |        |

|        | The most p | practical way of obtaining a uniform distribution of series connected SCRs is to |
|--------|------------|----------------------------------------------------------------------------------|
| 20     | (A)        | Connect a resistor of value R in series with each of the series connected SCRs   |
| 28     | (B)        | Connect a resistor of value R in parallel with each of the series connected SCRs |
|        | (C)        | Connect a resistor of value R in series with one of the series connected SCRs    |
|        | (D)        | Connect a resistor of value R in parallel with one of the series connected SCRs. |
| Answer | Option C   |                                                                                  |
|        |            |                                                                                  |

|        | 3 SCRs are connected in series. The string efficiency is 91%. SCRs 1, 2 & 3 have leakage currents 4 mA, 8 mA & 12 mA. Which SCR will block more voltage? |                                        |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
|        | (A)                                                                                                                                                      | (A) SCR - 1                            |  |  |
|        | (B)                                                                                                                                                      | SCR - 2                                |  |  |
| 29     | (C)                                                                                                                                                      | SCR - 3                                |  |  |
|        | (D)                                                                                                                                                      | All the three will block equal voltage |  |  |
| Answer | Option B                                                                                                                                                 | 551 U = 139 S                          |  |  |

| 20     | 21 SCRs with a rating of 1000 V & 200 A are available to be used in a string to handle 6 KV & 1 KV. Calculate the number of series & parallel units required in case the de – rating factor is 0.1. (Round off the fraction to the greatest & nearest integer) |                                        |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| 50     | (A)                                                                                                                                                                                                                                                            | Series = 7, Parallel = 6               |  |
|        | (B)                                                                                                                                                                                                                                                            | Series = 6, Parallel = 7               |  |
|        | (C)                                                                                                                                                                                                                                                            | Series = 6, Parallel = 6               |  |
|        | (D)                                                                                                                                                                                                                                                            | All the three will block equal voltage |  |
| Answer | Option A                                                                                                                                                                                                                                                       |                                        |  |

| Droporod Dv     | Verified By        | Re-Verified By       | Approved By      |
|-----------------|--------------------|----------------------|------------------|
| Mr. D.V. katro  | Mr. P.A.MALI       | Mr. Patil S. S.      | Mr. Mandale R.K. |
| IVII. R.V.Kalie | Module Coordinator | Academic Coordinator | HOD EE           |





NARHE | PUNE -41 | INDIA

DEPARTMENT OF ELECTRICAL ENGINEERING

#### 04 – Phase Controlled Rectifiers

Marks:-18

#### Content of Chapter:-

4.1 Phase control: firing angle, conduction angle.

4.2 Single phase half controlled full controlled and midpoint controlled rectifier with R. RL load: Circuit diagram, working, input- output waveforms, equations for DC output and effect of freewheeling diode. Different configurations of bridge controlled rectifiers: Full bridge, half bridge with common anode, common cathode, SCRs in one arm and diodes in another arm.

|             | In the process of diode based rectification, the alternating input voltage is converted into |                                                                     |  |
|-------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
|             | (A)                                                                                          | an uncontrolled alternating output voltage                          |  |
| 1           | (B)                                                                                          | an uncontrolled direct output voltage                               |  |
| •           | (C)                                                                                          | a controlled alternating output voltage                             |  |
|             | (D)                                                                                          | a controlled direct output voltage                                  |  |
| Answer      | Option B                                                                                     |                                                                     |  |
| Explanation | Rectification                                                                                | is AC to DC. In DIODE biased rectification, control is not possible |  |
| -           |                                                                                              |                                                                     |  |

|             | In a half-wave rectifier, the                                                                    |                                                                                 |  |
|-------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
|             | (A)                                                                                              | current & voltage both are bi-directional                                       |  |
|             | (B)                                                                                              | current & voltage both are uni-directional                                      |  |
| 2           | (C)                                                                                              | current is always uni-directional but the voltage can be bi-directional or uni- |  |
|             |                                                                                                  | directional                                                                     |  |
|             | (D)                                                                                              | current can be bi-directional or uni-directional but the voltage is always uni- |  |
|             |                                                                                                  | directional                                                                     |  |
| Answer      | Option C                                                                                         |                                                                                 |  |
| Explanation | Current is always in one direction only, but voltage can be bi-directional in case of an L load. |                                                                                 |  |
|             |                                                                                                  |                                                                                 |  |

| For a certain diode based rectifier, the output voltage (average value) is equation $1/2\pi$ [ $\int Vm \sin \omega t d(\omega t)$ ] Where the integral runs from 0 to $\pi$ The rectifier configuration must be that of a |             | in diode based rectifier, the output voltage (average value) is given by the $2\pi$ [ $\int Vm \sin \omega t d(\omega t)$ ] Where the integral runs from 0 to $\pi$ configuration must be that of a |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                                                                                                                          | (A)         | single phase full wave with R load                                                                                                                                                                  |
|                                                                                                                                                                                                                            | (B)         | single phase full wave with RL load                                                                                                                                                                 |
|                                                                                                                                                                                                                            | (C)         | single phase half wave with R load                                                                                                                                                                  |
|                                                                                                                                                                                                                            | (D)         | single phase half wave with RL load                                                                                                                                                                 |
| Answer                                                                                                                                                                                                                     | Option C    |                                                                                                                                                                                                     |
| Explanation                                                                                                                                                                                                                | Integration | is 0 to $\pi$ from base period of 1/2 $\pi$ so it is a half wave R load.                                                                                                                            |

|             | For a single phase half wave rectifier, with R load, the diode is reversed biased from $\omega$ t = |                     |  |
|-------------|-----------------------------------------------------------------------------------------------------|---------------------|--|
|             | (A)                                                                                                 | 0 to π, 2π to 2π/3  |  |
| 4           | (B)                                                                                                 | π to 2π, 2π/3 to 3π |  |
|             | (C)                                                                                                 | π to 2π, 2π to 2π/3 |  |
|             | (D)                                                                                                 | 0 to π, π to 2π     |  |
| Answer      | Option B                                                                                            |                     |  |
| Explanation | Diode will be reversed biased in the negative half cycles.                                          |                     |  |
|             |                                                                                                     |                     |  |

|             | The secondary transformer voltage Vs is given by the expression Vs = Vm sin $\omega t$<br>Find the PIV of the diode. |            |  |
|-------------|----------------------------------------------------------------------------------------------------------------------|------------|--|
| 5           | (A)                                                                                                                  | $\sqrt{2}$ |  |
|             | (B)                                                                                                                  | Vs         |  |
|             | (C)                                                                                                                  | Vm         |  |
|             | (D)                                                                                                                  | √2 Vm      |  |
| Answer      | Option C                                                                                                             |            |  |
| Explanation | $PIV = \sqrt{2} Vs = Vm.$                                                                                            |            |  |
| -           |                                                                                                                      |            |  |

|             | In a 1-Phase HW diode rectifier with R load, the average value of load current is given by Take Input (Vs) = Vmsinωt |       |  |
|-------------|----------------------------------------------------------------------------------------------------------------------|-------|--|
| 6           | (A)                                                                                                                  | Vm/R  |  |
| 0           | (B)                                                                                                                  | Vm/2R |  |
|             | (C)                                                                                                                  | Vm/πR |  |
|             | (D)                                                                                                                  | Zero  |  |
| Answer      | Option C                                                                                                             |       |  |
| Explanation | Vo = $\sqrt{(1/2\pi)} \int Wsinωt. d(ωt)$ Vo = Vm/π                                                                  |       |  |
| -           | $I = Vo/R = Vm/\pi R.$                                                                                               |       |  |

|             | The switch (shown in green) is closed at $\omega t$ = 0. The load current or capacitor current has the maximum value at $\omega t$ = |                       |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| 7           | (A)                                                                                                                                  | OEAL FULY LELHNIC     |  |
| 1           | (B)                                                                                                                                  | π                     |  |
|             | (C)                                                                                                                                  | 2π                    |  |
|             | (D)                                                                                                                                  | none of the mentioned |  |
| Answer      | Option A                                                                                                                             |                       |  |
| Explanation | The instant switch is closed the load current will be zero due to the nature of the capacitor                                        |                       |  |

|   | A 1-phas                             | se 230V, 1KW heater is connected across a 1-phase HW rectifier (diode based). |  |
|---|--------------------------------------|-------------------------------------------------------------------------------|--|
|   | The power delivered to the heater is |                                                                               |  |
| 0 | (A)                                  | 300 W                                                                         |  |
| o | (B)                                  | 400 W                                                                         |  |
|   | (C)                                  | 500 W                                                                         |  |
|   | (D)                                  | 600 W                                                                         |  |

| Answer      | Option C                           |
|-------------|------------------------------------|
| Explanation | R = (230 x 230)/1000               |
|             | $V(rms) = (\sqrt{2} \times 230)/2$ |
|             | $P = V(rms)^2/R = 500W.$           |

|             | -phase half w<br>factor is                                                | vave diode rectifier with R load, has input voltage of 240 V. The input power |  |
|-------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| 0           | (A)                                                                       | Unity                                                                         |  |
| 9           | (B)                                                                       | 0.707 lag                                                                     |  |
|             | (C)                                                                       | 0.56 lag                                                                      |  |
|             | (D)                                                                       | 0.865 lag                                                                     |  |
| Answer      | Option C                                                                  |                                                                               |  |
| Explanation | Input p.f = V(rms)/Vs                                                     |                                                                               |  |
|             | Vrms is the RMS value of output voltage. Vrms = $(\sqrt{2} \times 230)/2$ |                                                                               |  |
|             | Vs = 230                                                                  |                                                                               |  |
|             | pf = 0.707.                                                               |                                                                               |  |
|             |                                                                           |                                                                               |  |

|             | -phase half<br>current is | wave diode rectifier with R = 1 K $\Omega$ has input voltage of 240 V. The diode peak |
|-------------|---------------------------|---------------------------------------------------------------------------------------|
| 40          | (A)                       | Zero                                                                                  |
| 10          | (B)                       | 240mA                                                                                 |
|             | (C)                       | 24mA                                                                                  |
|             | (D)                       | 0.24mA                                                                                |
| Answer      | Option B                  | PUNE                                                                                  |
| Explanation | Diode peak c              | current = peak current through the load = Vo/R = Vm/2R.                               |
|             |                           |                                                                                       |

|             | Vs = 325 sin                                | <b>ωt (secondary side)</b> The ripple voltage is |  |
|-------------|---------------------------------------------|--------------------------------------------------|--|
|             | (A)                                         | 125.32 V                                         |  |
| 11          | (B)                                         | 255.65 V                                         |  |
|             | (C)                                         | 325 V                                            |  |
|             | (D)                                         | 459.12 V                                         |  |
| Answer      | Option A                                    | ZEAL POLYTECHNIC                                 |  |
| Explanation | Ripple voltage = $\sqrt{(Vrms^2 + Vavg^2)}$ |                                                  |  |
| -           | Vrms = Vm/2                                 |                                                  |  |
|             | Vavg = Vm/π                                 |                                                  |  |

|             | For a single phase half wave rectifier, the rectifier efficiency is always constant & it is |                  |  |
|-------------|---------------------------------------------------------------------------------------------|------------------|--|
|             | (A)                                                                                         | 4/π <sup>2</sup> |  |
| 12          | (B)                                                                                         | 8/π <sup>2</sup> |  |
|             | (C)                                                                                         | 100              |  |
|             | (D)                                                                                         | 2/π <sup>2</sup> |  |
| Answer      | Option A                                                                                    |                  |  |
| Explanation | Rectifier efficiency = Pdc/Pac                                                              |                  |  |
|             | $Pdc = (Vm \times Im)/\pi^2$                                                                |                  |  |
|             | $Pac = 4/(Vm \times Im).$                                                                   |                  |  |

|             | A single-phase full wave mid-point type diode rectifier requires number of diodes whereas bridge type requires |     |  |
|-------------|----------------------------------------------------------------------------------------------------------------|-----|--|
| 10          | (A)                                                                                                            | 1,2 |  |
| 15          | (B)                                                                                                            | 2,4 |  |
|             | (C)                                                                                                            | 4,8 |  |
|             | (D)                                                                                                            | 3,2 |  |
| Answer      | Option A                                                                                                       |     |  |
| Explanation | A bridge type requires 4 diodes which are connected in a bridge, and the mid-point has 2                       |     |  |
|             | diodes.                                                                                                        |     |  |

|             | A single-phase full wave rectifier is a                        |                          |
|-------------|----------------------------------------------------------------|--------------------------|
|             | (A)                                                            | single pulse rectifier   |
| 14          | (B)                                                            | multiple pulse rectifier |
|             | (C)                                                            | two pulse rectifier      |
|             | (D)                                                            | three pulse rectifier    |
| Answer      | Option C                                                       | * 63                     |
| Explanation | It is a two-pulse rectifier as it generates 2 pulses per cycle |                          |

|             | In a 1-phase full wave bridge rectifier with M-2 type of connection has secondary side voltage Vs = Vm sin $\omega$ t, with R load & ideal diodes.<br>The expression for the average value of the output voltage can be given by |                                                       |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| 15          | (A)                                                                                                                                                                                                                              | 2Vm/π                                                 |  |
|             | (B)                                                                                                                                                                                                                              | Vm/π                                                  |  |
|             | (C)                                                                                                                                                                                                                              | Vm/√2                                                 |  |
|             | (D)                                                                                                                                                                                                                              | 2Vm/√2                                                |  |
| Answer      | Option A                                                                                                                                                                                                                         |                                                       |  |
| Explanation | The voltage waveform is a pulsating voltage with peak value Vm& symmetrical about $\pi$ .                                                                                                                                        |                                                       |  |
|             | Vo = (1/π) ∫⊓                                                                                                                                                                                                                    | Vo = $(1/\pi) \int^{\pi} Vm sin \omega t d(\omega t)$ |  |

|             | In a 1-phase full wave bridge rectifier with M-2 type of connection has secondary side voltage Vs = Vm sin $\omega$ t, with R load & ideal diodes. The expression for the rms value of the output voltage can be given by |                                                  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| 16          | (A)                                                                                                                                                                                                                       | Vm/π                                             |  |
|             | (B)                                                                                                                                                                                                                       | Vm/√2                                            |  |
|             | (C)                                                                                                                                                                                                                       | Vm                                               |  |
|             | (D)                                                                                                                                                                                                                       | Vm <sup>2</sup>                                  |  |
| Answer      | Option B                                                                                                                                                                                                                  |                                                  |  |
| Explanation | The voltage waveform is a pulsating voltage with peak value Vm& symmetrical about $\pi$ .                                                                                                                                 |                                                  |  |
|             | Vo = (1/π) ∫π '                                                                                                                                                                                                           | $Vm^2 sin^2\omega t d(\omega t) = Vm/\sqrt{2}$ . |  |

|    | The PIV experienced by the diodes in the mid-point type configuration is |     |
|----|--------------------------------------------------------------------------|-----|
| 17 | (A)                                                                      | Vm  |
|    | (B)                                                                      | 2Vm |
|    | (C)                                                                      | 4Vm |

|             | (D)                                                                         | Vm/2 |
|-------------|-----------------------------------------------------------------------------|------|
| Answer      | Option B                                                                    |      |
| Explanation | In the m-2 type connection, each diode experiences a reverse voltage of 2Vm |      |

|             | for a single phase, full bridge, diode rectifier excited from a 230 V, 50 Hz source. With R = $10 \Omega$ & the inductance(L) large enough to maintain continues conduction, the average and rms values of diode currents will be |                 |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| 18          | (A)                                                                                                                                                                                                                               | 7.85 A, 8 A     |  |
|             | (B)                                                                                                                                                                                                                               | 10.35 A, 7.85 A |  |
|             | (C)                                                                                                                                                                                                                               | 10.35 A, 14.6 A |  |
|             | (D)                                                                                                                                                                                                                               | 8 A, 8 A        |  |
| Answer      | Option C                                                                                                                                                                                                                          |                 |  |
| Explanation | Id(avg) = Io/2 = Vo/2R                                                                                                                                                                                                            |                 |  |
|             | $Id(rms) = Io/\sqrt{2} = Vo/R\sqrt{2}$                                                                                                                                                                                            |                 |  |
|             | . ,                                                                                                                                                                                                                               |                 |  |

|             | For a single phase, full bridge, diode rectifier excited from a 230 V, 50 Hz source. With R = 10 $\Omega$ & the inductance(L) large enough to maintain continuous conduction, the value of the supply power factor will be |           |  |   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|---|
| 19          | (A)                                                                                                                                                                                                                        | 0.707 lag |  | × |
|             | (B)                                                                                                                                                                                                                        | 0.9 lag   |  |   |
|             | (C)                                                                                                                                                                                                                        | 0.86 lag  |  | × |
|             | (D)                                                                                                                                                                                                                        | Unity     |  |   |
| Answer      | Option B                                                                                                                                                                                                                   |           |  |   |
| Explanation | Pf = Vs.ls.cos0/Vo.lo                                                                                                                                                                                                      |           |  |   |
| -           | lo = Vo/R A                                                                                                                                                                                                                |           |  |   |
|             | Vo = 2Vm/π Volts                                                                                                                                                                                                           |           |  |   |

|             | The rectification efficiency for B-2 type & M-2 type full wave diode rectifiers are & respectively |           |  |
|-------------|----------------------------------------------------------------------------------------------------|-----------|--|
| 20          | (A)                                                                                                | 8/π & 4/π |  |
| 20          | (B)                                                                                                | 4/π & 8/π |  |
|             | (C)                                                                                                | 8/π & 8/π |  |
|             | (D)                                                                                                | 4/π & 4/π |  |
| Answer      | Option C                                                                                           |           |  |
| Explanation | B-2 type has efficiency $8/\pi$ . M-2 type has efficiency half of that of a B-2 type               |           |  |

| 21          | A load of R =<br>& than a dioc<br>(A)<br>(B)<br>(C) | 60 Ω is fed from 1phase, 230 V, 50 Hz supply through a step-up transformer<br>le. The transformer turns ratio = 2. The power delivered to the load is<br>614 Watts<br>714 Watts<br>814 Watts |
|-------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (D)                                                 | 914 Watts                                                                                                                                                                                    |
| Answer      | Option B                                            |                                                                                                                                                                                              |
| Explanation | $P = Vo^2/R$                                        |                                                                                                                                                                                              |
| -           | Vo = Vm/π                                           |                                                                                                                                                                                              |

| ſ | AC supplied to the rectifier is 2 x 230 = 460 V (rms) |
|---|-------------------------------------------------------|
|   | Therefore, Vo = $\sqrt{2} \times 460 / \pi = 207.04$  |
| I | P = 714.43 W.                                         |

|             | Assume that                                                                                                    | anode of D12 is positive at $\omega$ t = 0 and likewise. |
|-------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 22          | (A)                                                                                                            | 0 to π                                                   |
|             | (B)                                                                                                            | π to 2π                                                  |
|             | (C)                                                                                                            | 2π to 3π                                                 |
|             | (D)                                                                                                            | 0 to π/2                                                 |
| Answer      | option B                                                                                                       |                                                          |
| Explanation | In the first cycle i.e. 0 to $\pi$ , D12 and D13 conduct. In the next cycle i.e. $\pi$ to $2\pi$ , D11 and D14 |                                                          |
|             | conduct.                                                                                                       |                                                          |

|        | 21 SCRs v<br>1 KV. Calc<br>0.1. (Rour | with a rating of 1000 V & 200 A are available to be used in a string to handle 6 KV & culate the number of series & parallel units required in case the de – rating factor is no off the fraction to the greatest & nearest integer) |
|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | (A)                                   | Series = 7, Parallel = 6                                                                                                                                                                                                             |
|        | (B)                                   | Series = 6, Parallel = 7                                                                                                                                                                                                             |
| 23     | (C)                                   | Series = 6, Parallel = 6                                                                                                                                                                                                             |
|        | (D)                                   | Series = 7, Parallel = 7                                                                                                                                                                                                             |
| Answer | Option A                              |                                                                                                                                                                                                                                      |
|        |                                       | X HALL CHAINE                                                                                                                                                                                                                        |

|        | The avera | ge output voltage is maximum when SCR is triggered at |  |
|--------|-----------|-------------------------------------------------------|--|
|        | (A)       | π                                                     |  |
| 24     | (B)       | 0 CONEL                                               |  |
| 27     | (C)       | $\pi/2$                                               |  |
|        | (D)       | $\pi/4$                                               |  |
| Answer | Option B  |                                                       |  |
|        |           | ESTU-ISSR                                             |  |

| 25     | In a single<br>value of th | In a single phase half – wave thyristor circuit with R load & Vs = Vm $\sin\omega t$ , the maximum value of the load current can be given by |  |
|--------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | (A)                        | 2Vm/R                                                                                                                                        |  |
|        | (B)                        | Vs/R                                                                                                                                         |  |
|        | (C)                        | Vm/2                                                                                                                                         |  |
|        | (D)                        | Vs/2                                                                                                                                         |  |
| Answer | Option C                   |                                                                                                                                              |  |

|        | A three – ph | ase, three – pulse, M – 3 type controlled converter uses number of SCRs. |
|--------|--------------|--------------------------------------------------------------------------|
| 26     | (A)          | 1                                                                        |
| 20     | (B)          | 2                                                                        |
|        | (C)          | 3                                                                        |
|        | (D)          | 4                                                                        |
| Answer | Option C     |                                                                          |

|        | A three phas     | e full converter will require number of SCRs. |  |
|--------|------------------|-----------------------------------------------|--|
| 27     | (A)              | 3                                             |  |
| 2.     | (B)              | 6                                             |  |
|        | (C)              | 9                                             |  |
|        | (D)              | 2                                             |  |
| Answer | Option B         |                                               |  |
|        | Choppers convert |                                               |  |
|        | (A)              | AC to DC                                      |  |
| 28     | (B)              | DC to AC                                      |  |
|        | (C)              | DC to DC                                      |  |
|        | (D)              | AC to AC                                      |  |
| Answer | Option           |                                               |  |

|        | Which dev | rice can be used in a chopper circuit? |  |
|--------|-----------|----------------------------------------|--|
| 29     | (A)       | BJT                                    |  |
|        | (B)       | MOSFET                                 |  |
|        | (C)       | GTO                                    |  |
|        | (D)       | All of the mentioned                   |  |
| Answer | Option C  | * *                                    |  |
|        | ÷         |                                        |  |
|        |           |                                        |  |

|        | What is t | he duty cycle of a chopper? |
|--------|-----------|-----------------------------|
| 30     | (A)       | Ton/Toff                    |
|        | (B)       | Ton/T                       |
|        | (C)       | T/Ton                       |
|        | (D)       | Toff x Ton                  |
| Answer | Option B  |                             |

|        |             | ESTD-1996            |
|--------|-------------|----------------------|
|        | Inverters c | onverts              |
| 31     | (A)         | dc power to dc power |
|        | (B)         | dc power to ac power |
|        | (C)         | ac power to dc power |
|        | (D)         | ac power to dc power |
| Answer | Option B    |                      |

|        | Line – commutated inverters have |                                               |
|--------|----------------------------------|-----------------------------------------------|
|        | (A)                              | AC on the supply side and DC on the load side |
| 32     | (B)                              | AC on both supply and load side               |
|        | (C)                              | DC on both supply and load side               |
|        | (D)                              | DC on the supply side and AC on the load side |
| Answer | Option B                         |                                               |

| Prenared By     | Verified By        | Re-Verified By       | Approved By      |
|-----------------|--------------------|----------------------|------------------|
| Mr. D.V. katro  | Mr. P.A.MALI       | Mr. Patil S. S.      | Mr. Mandale R.K. |
| IVII. N.V.Kalle | Module Coordinator | Academic Coordinator | HOD EE           |



NARHE | PUNE -41 | INDIA



DEPARTMENT OF ELECTRICAL ENGINEERING

| 05 – Industrial Controlled circuit | Marks:08 |
|------------------------------------|----------|
|                                    |          |

#### **Content of Chapter:-**

5.1 application burglars alarm system, battery charger using scr, Emergency lighting system temperature controller using scr, illumination control, fan speed control using triac,

5.2 smps circuit using MOSFET ,IGBT and power transistor

5.3 offline and online circuit using mosfet, IGBT and power transistor

5.4 scr mosfet and IGBT based ac and dc circuit breaker

|        | SMPS is us | sed for                              |
|--------|------------|--------------------------------------|
|        | (A)        | Obtaining controlled ac power supply |
| 1      | (B)        | Obtaining controlled dc power supply |
|        | (C)        | Storage of dc power                  |
|        | (D)        | Switch from one source to another    |
| Answer | Option A   |                                      |

| 2      | Choose | the incorrect statement.                           |
|--------|--------|----------------------------------------------------|
|        | (A)    | SMPS is less sensitive to input voltage variations |
|        | (B)    | SMPS is smaller as compared to rectifiers          |
|        | (C)    | SMPS has low input ripple                          |
|        | (D)    | SMPS is a source of radio interference             |
| Answer |        |                                                    |

| 3      | Full form o | f UPS                        |
|--------|-------------|------------------------------|
|        | (A)         | Uninterruptable power supply |
|        | (B)         | United power supply          |
|        | (C)         | Uninterruptible power supply |
|        | (D)         | Upper power supply           |
| Answer | Option C    |                              |

|        | A power inverter is a combination of and |                                                        |
|--------|------------------------------------------|--------------------------------------------------------|
|        | (A)                                      | Electronic circuitry and mechanical rotating apparatus |
| 4      | (B)                                      | Power and current source                               |
|        | (C)                                      | Transformer and electronic circuitry                   |
|        | (D)                                      | None of the above                                      |
| Answer | Option B                                 |                                                        |

| 5      | The maxi | mum firing angle in the half wave controlled regulator is - |
|--------|----------|-------------------------------------------------------------|
|        | (A)      | 180 degree                                                  |
|        | (B)      | 190 degree                                                  |
|        | (C)      | 200 degree                                                  |
|        | (D)      | 210 degree                                                  |
| Answer | Option D |                                                             |

|        | Full form o | fLED                        |
|--------|-------------|-----------------------------|
|        | (A)         | Light emitting diode        |
| 6      | (B)         | Light activated scr         |
|        | (C)         | Switched Mode Power Supply  |
|        | (D)         | Switch mode of Power supply |
| Answer | Option A    |                             |

|        | When the temperature increases, the intrinsic standoff ratio |                              |
|--------|--------------------------------------------------------------|------------------------------|
| 7      | (A)                                                          | Increase                     |
|        | (B)                                                          | Decreases                    |
|        | (C)                                                          | Essentially remains the same |
|        | (D)                                                          | None of the above            |
| Answer | Option C                                                     | X Y Y                        |

|        | The power | demand can be estimated approximately by |  |  |
|--------|-----------|------------------------------------------|--|--|
| 8      | (A)       | Load survey method                       |  |  |
|        | (B)       | Mathematical method.                     |  |  |
|        | (C)       | Statistical method.                      |  |  |
|        | (D)       | Economic parameters                      |  |  |
| Answer | Option C  |                                          |  |  |

|        | The Forwa | The Forward Dv/Dt Rating Of An SCR:-                                         |  |  |
|--------|-----------|------------------------------------------------------------------------------|--|--|
| 9      | (A)       | Decrease with The Decrease in The RMS Value If Forward Anode Cathode Voltage |  |  |
|        | (B)       | Decrease with the Increase in the Junction Temperature                       |  |  |
|        | (C)       | Increase with An Increase in The Junction Temperature                        |  |  |
|        | (D)       | Increase With The Decrease In The RMS Value Of Forward Anode Cathode         |  |  |
|        |           | Voltage                                                                      |  |  |
| Answer | Option B  |                                                                              |  |  |

|    | Light dimmer circuit is design using |               |
|----|--------------------------------------|---------------|
|    | (A)                                  | DIAC          |
| 10 | (B)                                  | TRIAC         |
|    | (C)                                  | DIAC & TRIAC  |
|    | (D)                                  | None of above |

| Answer | Option B |
|--------|----------|
|        |          |

|        | The Function of SCR Contactor in Resistance Welding Machine Is |                                                                        |
|--------|----------------------------------------------------------------|------------------------------------------------------------------------|
|        | (A)                                                            | To Provide an Accurate Weld Time for Each Weld                         |
| 11     | (B)                                                            | To Connect the Large Power Supply to Welding by Closing a Small Switch |
|        | (C)                                                            | To Provide Full Wave Rectification of the Welding Current              |
|        | (D)                                                            | To Avoid Saturation of Transformation Core                             |
| Answer | Option B                                                       |                                                                        |

|        | for a buck | for a buck converter to reduce the conduction losses in diode |  |
|--------|------------|---------------------------------------------------------------|--|
|        | (A)        | A high on - resistance switch can be added in parallel        |  |
| 12     | (B)        | A low on - resistance switch can be added in parallel         |  |
|        | (C)        | A high on - resistance switch can be added in series          |  |
|        | (D)        | A low on - resistance switch can be added in series           |  |
| Answer | Option B   | X SALIDAT                                                     |  |

| 13     | The maxim | um firing angle in the full wave controlled regulator is - |
|--------|-----------|------------------------------------------------------------|
|        | (A)       | 180 degree                                                 |
|        | (B)       | 190 degree                                                 |
|        | (C)       | 200 degree                                                 |
|        | (D)       | 210 degree                                                 |
| Answer | Option D  |                                                            |

|        | Choose the | incorrect statement.                               |
|--------|------------|----------------------------------------------------|
| 14     | (A)        | SMPS is less sensitive to input voltage variations |
|        | (B)        | SMPS is smaller as compared to rectifiers          |
|        | (C)        | SMPS has low input ripple                          |
|        | (D)        | SMPS is a source of radio interference             |
| Answer | Option C   |                                                    |

| 15     | Two six pulse converters used for bipolar HVDC transmission system, are rated at 1000 MW, +- 200 kV. Find the rms current rating required for the SCRs. |                       |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
|        | (A)                                                                                                                                                     | 2500 A                |  |
|        | (B)                                                                                                                                                     | 1350 A                |  |
|        | (C)                                                                                                                                                     | 1445 A                |  |
|        | (D)                                                                                                                                                     | none of the mentioned |  |
| Answer | Option A                                                                                                                                                |                       |  |

|    | During t | During the commutation period in 3 phase converters, overlap time is -       |  |  |
|----|----------|------------------------------------------------------------------------------|--|--|
|    | (A)      | Dependent on the load current                                                |  |  |
| 16 | (B)      | Dependent on the voltage                                                     |  |  |
|    | (C)      | Dependent on both the load current and load voltage behind the short circuit |  |  |
|    |          | current                                                                      |  |  |

|        | (D)      | Independent on both the load current and load voltage |
|--------|----------|-------------------------------------------------------|
| Answer | Option A |                                                       |

|        | For An SCR, The Gate-Cathode Characteristics Have a Slope Of 130. The Gate Power Dissipation Is 0.5 Watt. Find Ig. |        |  |
|--------|--------------------------------------------------------------------------------------------------------------------|--------|--|
| 17     | (A)                                                                                                                | 6.2 Ma |  |
| 17     | (B)                                                                                                                | 0.62 A |  |
|        | (C)                                                                                                                | 620 Ma |  |
|        | (D)                                                                                                                | 62 Ma  |  |
| Answer | Option C                                                                                                           |        |  |

|        | Two six pulse converters used for bipolar HVDC transmission system, are rated at 1000 MW, +- 200 kV. Find the rms current rating required for the SCRs |                   |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 18     | (A)                                                                                                                                                    | 2500 A            |  |
| 10     | (B)                                                                                                                                                    | 1350 A            |  |
|        | (C)                                                                                                                                                    | 1445 A            |  |
|        | (D)                                                                                                                                                    | None of the above |  |
| Answer | Option A                                                                                                                                               |                   |  |

|        | For An SCR, The Gate-Cathode Characteristics Have A Slope Of 130. The Gate Power Dissipation Is 0.5 Watt. Find Ig. |             |  |
|--------|--------------------------------------------------------------------------------------------------------------------|-------------|--|
| 19     | (A)                                                                                                                | 6.2 Ma      |  |
|        | (B)                                                                                                                | 0.62 A      |  |
|        | (C)                                                                                                                | 620 Ma      |  |
|        | (D)                                                                                                                | 62 Ma       |  |
| Answer | Option C                                                                                                           |             |  |
|        |                                                                                                                    | 2510-1338 Y |  |

|        | Single pha | ase half bridge inverters requires |
|--------|------------|------------------------------------|
| 20     | (A)        | Two wire ac supply                 |
| 20     | (B)        | Two wire dc supply                 |
|        | (C)        | Three wire ac supply               |
|        | (D)        | Three wire dc supply               |
| Answer | Option D   |                                    |

|        | The output of a single – phase half bridge inverter on R load is ideally |                   |
|--------|--------------------------------------------------------------------------|-------------------|
| 21     | (A)                                                                      | A sine wave       |
|        | (B)                                                                      | A square wave     |
|        | (C)                                                                      | A triangular wave |
|        | (D)                                                                      | Constant dc       |
| Answer | Option B                                                                 |                   |

|        | A three - ph | ase bridge inverter requires minimum of switching devices.       |
|--------|--------------|------------------------------------------------------------------|
| 22     | (A)          | 3                                                                |
|        | (B)          | 4                                                                |
|        | (C)          | 6                                                                |
|        | (D)          | 8                                                                |
| Answer | Option       |                                                                  |
|        | In the three | <ul> <li>phase bridge inverter, each step consists of</li> </ul> |
| 23     | (A)          | 30                                                               |
| 25     | (B)          | 60                                                               |
|        | (C)          | 90                                                               |
|        | (D)          | Will depend on the value of the firing angle                     |
| Answer | Option B     |                                                                  |

|        | In the 180 | ° mode VSI, devices conduct at a time |  |
|--------|------------|---------------------------------------|--|
| 24     | (A)        | 5 + C. A 110 A                        |  |
| 24     | (B)        | 2                                     |  |
|        | (C)        | 3                                     |  |
|        | (D)        | 4                                     |  |
| Answer | Option C   | *                                     |  |
|        |            |                                       |  |
|        |            |                                       |  |

|   | One stage power converter                                                              |        |  |
|---|----------------------------------------------------------------------------------------|--------|--|
|   | A) One stage power converter                                                           | 25     |  |
|   | B) One stage voltage converter                                                         | ZJ     |  |
|   | C) One stage frequency converter                                                       |        |  |
|   | D) None of the mentioned                                                               |        |  |
|   | Option C                                                                               | Answer |  |
| _ | C)     One stage frequency converter       D)     None of the mentioned       Dption C | Answer |  |

|        | SMPS is used for |                                      |  |
|--------|------------------|--------------------------------------|--|
| 26     | (A)              | Obtaining controlled ac power supply |  |
| 20     | (B)              | Obtaining controlled dc power supply |  |
|        | (C)              | Storage of dc power                  |  |
|        | (D)              | Switch from one source to another    |  |
| Answer | Option B         |                                      |  |

|        | Static UPS requires |                             |
|--------|---------------------|-----------------------------|
| 27     | (A)                 | Only rectifier              |
|        | (B)                 | Only inverter               |
|        | (C)                 | Both inverter and rectifier |
|        | (D)                 | None of the mentioned       |
| Answer | Option C            |                             |

|        | Under har | monic free load voltages, the 3 phase VSI |
|--------|-----------|-------------------------------------------|
| 28     | (A)       | Does not contains second harmonic         |
|        | (B)       | Does not contains third harmonic          |
|        | (C)       | Does not contains fifth harmonic          |
|        | (D)       | Does not contains seventh harmonic        |
| Answer | Option A  |                                           |

| The square wave operation of 3 phase VSI lines contains the harmonics. The amplitudes are |                                                |
|-------------------------------------------------------------------------------------------|------------------------------------------------|
| (A)                                                                                       | Directly proportional to their harmonic order  |
| (B)                                                                                       | Inversely proportional to their harmonic order |
| (C)                                                                                       | Not related to their harmonic order            |
| (D)                                                                                       | None of these                                  |
| Option B                                                                                  |                                                |
| -                                                                                         | (A)<br>(B)<br>(C)<br>(D)<br>Option B           |

|        | In square wave operation mode of 3 phase VSI, the VSI |                                                                    |
|--------|-------------------------------------------------------|--------------------------------------------------------------------|
| 30     | (A)                                                   | Can control the load voltage                                       |
|        | (B)                                                   | Cannot control the load voltage                                    |
|        | (C)                                                   | Cannot control the load voltage except by means of dc link voltage |
|        | (D)                                                   | Cannot control the load voltage except by means of dc link current |
| Answer | Option C                                              |                                                                    |
|        | I                                                     |                                                                    |

|        | In a 3 phase VSI SPWM to use a single carrier signal and preserve the features of PWM technique, the normalized carrier frequency should be |                       |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| 31     | (A)                                                                                                                                         | Multiple of two       |  |
|        | (B)                                                                                                                                         | Odd multiple of three |  |
|        | (C)                                                                                                                                         | Odd multiple of five  |  |
|        | (D)                                                                                                                                         | Odd multiple of seven |  |
| Answer | Option B                                                                                                                                    |                       |  |
|        | •                                                                                                                                           |                       |  |

|        | In three pl | hase voltage source inverters                                            |
|--------|-------------|--------------------------------------------------------------------------|
| 32     | (A)         | Only amplitude of voltage is controllable                                |
|        | (B)         | Only phase is controllable                                               |
|        | (C)         | Both amplitude and phase is controllable                                 |
|        | (D)         | Amplitude, phase and frequency of voltages should always be controllable |
| Answer | Option D    |                                                                          |

|    | In a 3-phase voltage source inverter used for speed control of induction motor,<br>ant parallel diodes are used across each switching device. The main purpose of is |                                                      |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| 33 | (A)                                                                                                                                                                  | Protect the switching devices against overvoltage    |  |
|    | (B)                                                                                                                                                                  | Provide the path for freewheeling current            |  |
|    | (C)                                                                                                                                                                  | Allow the motor to return energy during regeneration |  |

|        | (D)      | Help in switching off the devices |
|--------|----------|-----------------------------------|
| Answer | Option C |                                   |

|        | The 120° mode of operation of a three phase bridge inverter requiresnumber of steps. |   |  |
|--------|--------------------------------------------------------------------------------------|---|--|
|        | (A)                                                                                  | 2 |  |
| 34     | (B)                                                                                  | 4 |  |
|        | (C)                                                                                  | 6 |  |
|        | (D)                                                                                  | 8 |  |
| Answer | Option C                                                                             |   |  |

| 35     | In case of | the 120° mode of operation, | devices conduct at a time. |
|--------|------------|-----------------------------|----------------------------|
|        | (A)        | 2                           |                            |
|        | (B)        | 3                           |                            |
|        | (C)        | 4 × C A 110                 | 2.14                       |
|        | (D)        | none                        |                            |
| Answer | Option A   | * 23                        | 100 ×                      |
|        | •          |                             | EL                         |
|        |            |                             |                            |

|        | The peak | k value of the line voltage in case of 120° mode of operation of a three-phase |
|--------|----------|--------------------------------------------------------------------------------|
| 36     | (A)      | Vs/2                                                                           |
|        | (B)      | 3Vs/2                                                                          |
|        | (C)      | Vs/v2                                                                          |
|        | (D)      | Vs                                                                             |
| Answer | Option D | * * *                                                                          |

|        | In a three | phase voltage source inverters                                           |
|--------|------------|--------------------------------------------------------------------------|
| 37     | (A)        | Only amplitude of voltage is controllable                                |
|        | (B)        | Only phase is controllable                                               |
|        | (C)        | Both amplitude and phase is controllable                                 |
|        | (D)        | Amplitude, phase and frequency of voltages should always be controllable |
| Answer | Option D   | 7PAT DOLVTERUNIC                                                         |
|        | •          |                                                                          |

|        | In the thre | e-phase bridge inverter, each step consists of |
|--------|-------------|------------------------------------------------|
|        | (A)         | 30°                                            |
| 38     | (B)         | 60°                                            |
|        | (C)         | 90°                                            |
|        | (D)         | will depend on the value of the firing angle   |
| Answer | Option B    |                                                |

|    | Why do we have to use Multilevel Inverter? |                                               |
|----|--------------------------------------------|-----------------------------------------------|
|    | (A)                                        | To overcome device rating limitation          |
| 39 | (B)                                        | For higher power application                  |
|    | (C)                                        | It produces output with less harmonic content |
|    | (D)                                        | All of these                                  |

| Answer Option D |  |
|-----------------|--|
|                 |  |

|        | Harmonic<br>Inverter.                            | content of Multilevel Inverter output is the output of Voltage Source |  |
|--------|--------------------------------------------------|-----------------------------------------------------------------------|--|
|        | (A)                                              | less than                                                             |  |
| 40     | (B)                                              | zero                                                                  |  |
|        | (C)                                              | greater than                                                          |  |
|        | (D)                                              | same as                                                               |  |
| Answer | Option A                                         |                                                                       |  |
|        | An 'm' level inverter needs number of capacitors |                                                                       |  |
|        | (A)                                              | 1-m                                                                   |  |
| 41     | (B)                                              | m-1                                                                   |  |
|        | (C)                                              | 1*m                                                                   |  |
|        | (D)                                              | m                                                                     |  |
| Answer | Option B                                         | X S.A. I.IONT                                                         |  |
|        | L                                                |                                                                       |  |

|        | Which of th | ne following is not a type of multilevel inverter? |
|--------|-------------|----------------------------------------------------|
| 42     | (A)         | Diode Clamped Multilevel Inverter                  |
|        | (B)         | Balancing Capacitor Multilevel Inverter            |
|        | (C)         | DC Bus Capacitor Multilevel Inverter               |
|        | (D)         | Cascaded H Bridge Multilevel Inverter              |
| Answer | Option C    |                                                    |
|        | •           |                                                    |

|        | No. of controlled semiconductor switches required to construct 5 level DCMLI per pole is |    |  |
|--------|------------------------------------------------------------------------------------------|----|--|
|        | (A)                                                                                      | 4  |  |
| 43     | (B)                                                                                      | 8  |  |
|        | (C)                                                                                      | 16 |  |
|        | (D)                                                                                      | 32 |  |
| Answer | Option B                                                                                 |    |  |
|        |                                                                                          |    |  |

| 44     | No. of main diodes is required to construct 5 Level DCMLI to produce the complete cycle waveform |    |  |
|--------|--------------------------------------------------------------------------------------------------|----|--|
|        | (A)                                                                                              | 4  |  |
|        | (B)                                                                                              | 6  |  |
|        | (C)                                                                                              | 8  |  |
|        | (D)                                                                                              | 16 |  |
| Answer | Option D                                                                                         |    |  |

| 45 | For k level Diode Clamped Multilevel Inverter, the number of capacitors required is (k is the number of levels) |              |  |
|----|-----------------------------------------------------------------------------------------------------------------|--------------|--|
|    | (A)                                                                                                             | k x 2        |  |
|    | (B)                                                                                                             | 1 - k        |  |
|    | (C)                                                                                                             | <b>k</b> - 1 |  |
|    | (D)                                                                                                             | 1/k          |  |

| 46     | With How many minimum clamping diodes per pole we can construct 5 levelDCMLI? |    |  |
|--------|-------------------------------------------------------------------------------|----|--|
|        | (A)                                                                           | 4  |  |
|        | (B)                                                                           | 6  |  |
|        | (C)                                                                           | 12 |  |
|        | (D)                                                                           | 18 |  |
| Answer | Option B                                                                      |    |  |

| 47     | In the ope | eration of 5 level DCMLI, how many times the switch is turned on per Cycle |
|--------|------------|----------------------------------------------------------------------------|
|        | (A)        | 1                                                                          |
|        | (B)        | 2                                                                          |
|        | (C)        | 3 h T Loo K                                                                |
|        | (D)        | 4                                                                          |
| Answer | Option A   |                                                                            |

| 48     | In inverters, to make the supply voltage constant |                                                       |  |
|--------|---------------------------------------------------|-------------------------------------------------------|--|
|        | (A)                                               | an inductor is placed in series with the load         |  |
|        | (B)                                               | capacitor is connected in parallel to the load side   |  |
|        | (C)                                               | capacitor is connected in parallel to the supply side |  |
|        | (D)                                               | none of the mentioned                                 |  |
| Answer | Option C                                          |                                                       |  |

|        | The extern | nal control of ac output voltage can be achieved in an inverter by              |
|--------|------------|---------------------------------------------------------------------------------|
| 49     | (A)        | connecting a cyclo-converter                                                    |
|        | (B)        | connecting an ac voltage controller between the output of the inverter and load |
|        | (C)        | connecting an ac voltage controller between the dc source and inverter          |
|        | (D)        | connecting an ac voltage controller between the load and the dc source          |
| Answer | Option B   |                                                                                 |
|        | •          |                                                                                 |

|        | The series-inverter control method is a/an |                                   |
|--------|--------------------------------------------|-----------------------------------|
|        | (A)                                        | internal voltage control method   |
| 50     | (B)                                        | external frequency control method |
|        | (C)                                        | external voltage control method   |
|        | (D)                                        | none of the mentioned             |
| Answer | Option C                                   |                                   |

| 51     | External control of dc input voltage can be obtained by the use of a |             |  |
|--------|----------------------------------------------------------------------|-------------|--|
|        | (A)                                                                  | transformer |  |
|        | (B)                                                                  | chopper     |  |
|        | (C)                                                                  | inverter    |  |
|        | (D)                                                                  | converter   |  |
| Answer | Option B                                                             |             |  |

|        | Method is an internal method for controlling the inverter output voltage. |                                |
|--------|---------------------------------------------------------------------------|--------------------------------|
| 52     | (A)                                                                       | series connection of inverters |
|        | (B)                                                                       | chopper method                 |
|        | (C)                                                                       | commutating capacitor          |
|        | (D)                                                                       | pulse width modulation         |
| Answer | Option D                                                                  |                                |

|        | In the PW                                      | In the PWM method                            |  |
|--------|------------------------------------------------|----------------------------------------------|--|
|        | (A)                                            | external commutating capacitors are required |  |
| 53     | (B)                                            | more average output voltage can be obtained  |  |
|        | (C)                                            | lower order harmonics are minimized          |  |
|        | (D)                                            | higher order harmonics are minimized         |  |
| Answer | Option C                                       |                                              |  |
|        | Which of the following is not a PWM technique? |                                              |  |
|        | (A)                                            | Single-pulse width modulation                |  |
| 54     | (B)                                            | Multiple-pulse width modulation              |  |
|        | (C)                                            | Triangular-pulse width modulation            |  |
|        | (D)                                            | Sinusoidal-pulse width modulation            |  |
| Answer | Option C                                       |                                              |  |
|        | •                                              |                                              |  |

|        | The sha  | pe of the output voltage waveform in a single PWM is |  |
|--------|----------|------------------------------------------------------|--|
| 55     | (A)      | square wave                                          |  |
|        | (B)      | triangular wave                                      |  |
|        | (C)      | quasi-square wave                                    |  |
|        | (D)      | sine wave                                            |  |
| Answer | Option C | × ×                                                  |  |

|        | In case of a single-pulse width modulation with the pulse width = 2d, to eliminate the nth harmonic from the output voltage |             |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------------|--|
|        | (A)                                                                                                                         | d = π       |  |
| 56     | (B)                                                                                                                         | $2d = \pi$  |  |
|        | (C)                                                                                                                         | $nd = \pi$  |  |
|        | (D)                                                                                                                         | $nd = 2\pi$ |  |
| Answer | Option C                                                                                                                    |             |  |

|        | Several equidistant pulses per half cycle are used in type of modulatio technique. |                   | type of modulation |
|--------|------------------------------------------------------------------------------------|-------------------|--------------------|
| 57     | (A)                                                                                | single-pulse      |                    |
|        | (B)                                                                                | multiple-pulse    |                    |
|        | (C)                                                                                | sine-pulse        |                    |
|        | (D)                                                                                | equidistant-pulse |                    |
| Answer | Option B                                                                           |                   |                    |

|    | In type of modulation method, the pulse width is not equal for all the |
|----|------------------------------------------------------------------------|
| 58 | Pulses                                                                 |

|        | (A)      | multiple pulse width modulation   |
|--------|----------|-----------------------------------|
|        | (B)      | single pulse width modulation     |
|        | (C)      | sinusoidal pulse width modulation |
|        | (D)      | none of the mentioned             |
| Answer | Option C |                                   |

|        | In PWM, th | e comparator output is further given to a |
|--------|------------|-------------------------------------------|
| 59     | (A)        | integrator                                |
|        | (B)        | scr devices                               |
|        | (C)        | trigger pulse generator                   |
|        | (D)        | snubber circuit                           |
| Answer | Option C   |                                           |

|        | In pulse w | vidth modulated inverters, the output voltage is controlled by controlling the |
|--------|------------|--------------------------------------------------------------------------------|
| 60     | (A)        | input frequency                                                                |
|        | (B)        | modulating index                                                               |
|        | (C)        | amplification factor                                                           |
|        | (D)        | none of the mentioned                                                          |
| Answer | Option B   | *                                                                              |
|        |            |                                                                                |
|        |            |                                                                                |

|        | A CSI con | verts                                                      |
|--------|-----------|------------------------------------------------------------|
| 61     | (A)       | the input dc current to an an current at output            |
|        | (B)       | the input ac current to dc current at output               |
|        | (C)       | the input dc current to amplified dc current at the output |
|        | (D)       | the input ac current to amplified ac current at the output |
| Answer | Option D  |                                                            |

|        |             | 20TH-1900                                                 |
|--------|-------------|-----------------------------------------------------------|
|        | In a VSI (V | /oltage source inverter)                                  |
| 62     | (A)         | the internal impedance of the DC source is negligible     |
|        | (B)         | the internal impedance of the DC source is very very high |
|        | (C)         | the internal impedance of the AC source is negligible     |
|        | (D)         | The IGBTs are fired at 0 degrees.                         |
| Answer | Option A    |                                                           |

|        | Force-com | mutated CSIs need                |
|--------|-----------|----------------------------------|
| 63     | (A)       | capacitors for their commutation |
|        | (B)       | inductors for their commutation  |
|        | (C)       | diodes for their commutation     |
|        | (D)       | none of the mentioned            |
| Answer | Option A  |                                  |

|        | Which of the following is used as a harmonic reduction technique in inverters? |                                    |
|--------|--------------------------------------------------------------------------------|------------------------------------|
| 64     | (A)                                                                            | Amplitude modulation               |
|        | (B)                                                                            | Cycloconverter control             |
|        | (C)                                                                            | Transformer connection             |
|        | (D)                                                                            | Series connection of two inverters |
| Answer | Option C                                                                       |                                    |

|        | In a full bridge VSI, in order to avoid the short circuit across the DC bus and the undefined AC output voltage condition, the modulating technique should ensure that |                                                |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| 65     | (A)                                                                                                                                                                    | Top switch of each leg is on at any instant    |  |
|        | (B)                                                                                                                                                                    | Bottom switch of each leg is on at any instant |  |
|        | (C)                                                                                                                                                                    | Either (a) or (b)                              |  |
|        | (D)                                                                                                                                                                    | None of these                                  |  |
| Answer | Option C                                                                                                                                                               | C X X                                          |  |
|        |                                                                                                                                                                        | Y CATION #                                     |  |

|        | The output current wave of a single-phase full bridge inverter on RL load is |                   |  |
|--------|------------------------------------------------------------------------------|-------------------|--|
| 66     | (A)                                                                          | a sine wave       |  |
|        | (B)                                                                          | a square wave     |  |
|        | (C)                                                                          | a triangular wave |  |
|        | (D)                                                                          | constant dc       |  |
| Answer | Option                                                                       |                   |  |

1~01

|        | The total harmonic distortion (THD) is the measure of |                                                   |  |
|--------|-------------------------------------------------------|---------------------------------------------------|--|
| 67     | (A)                                                   | input vs output power factor                      |  |
|        | (B)                                                   | temperature sensitivity                           |  |
|        | (C)                                                   | waveform distortion                               |  |
|        | (D)                                                   | contribution of each harmonic to the total output |  |
| Answer | Option C                                              |                                                   |  |
|        | L                                                     |                                                   |  |

| 68     | A single<br>the curr | A single-phase full bridge VSI has inductor L as the load. For a constant source voltage, the current through the inductor is |  |  |
|--------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | (A)                  | square wave                                                                                                                   |  |  |
|        | (B)                  | triangular wave                                                                                                               |  |  |
|        | (C)                  | sine wave                                                                                                                     |  |  |
|        | (D)                  | pulsed wave                                                                                                                   |  |  |
| Answer | Option B             |                                                                                                                               |  |  |

| <b>Prepared By</b><br>Mr. R. V. Katre | Verified By<br>Mr. P.A.MALI<br>Module Coordinator | <b>Re-Verified By</b><br>Mr. Patil S. S.<br>Academic Coordinator | Approved By<br>Mr. Mandale R.K.<br>HOD EE |
|---------------------------------------|---------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|