

Zeal Education Society's ZEAL POLYTECHNIC, PUNE. NARHE | PUNE -41 | INDIA

SECOND YEAR (SY)

DIPLOMA IN ELECTRICAL ENGINEERING SCHEME: I SEMESTER: III

NAME OF SUBJECT: ELECTRIC POWER GENERATION Subject Code: 22327

MSBTE QUESTION PAPERS & MODEL ANSWERS

- 1. MSBTE WINTER-18 EXAMINATION
- 2. MSBTE SUMMER-19 EXAMINATION
- **3.MSBTE WINTER-19 EXAMINATION**

11	1819)												
3	Ho	ours /	70	Marks	Seat	No.								
	Instru	ctions –	(1)	All Questions	are Comp	oulsor	y.							
			(2)	Answer each	next main	Que	stio	n c	on a	a ne	ew	pag	ge.	
			(3)	Illustrate your necessary.	answers v	with	nea	t sl	cetc	hes	w	here	ever	
			(4)	Figures to the	e right indi	icate	ful	l m	ark	s.				
			(5)	Mobile Phone Communicatio Examination I	n devices									
													Ma	rks
1.		Attempt	t any	<u>FIVE</u> of the	following	:								10
	a)	Classify load bas		hydro-electric p	olants acco	rding	to	the	e h	ead	an	d		
	b)	List the	types	s of turbine us	ed in hydr	ro po	we	r p	lant					
	c)	Describe	the	term 'Nuclear	shielding'	in N	lucl	ear	Po	wei	Pl	ant		
	d)	Enlist th	ne nu	clear fuels.										
		1171.				•	. 1.		_		1			

- e) Why concentrating collectors are used in solar power plant.
- f) Explain the concept of following terms.
 - (i) Connected load
 - (ii) Maximum demand
- g) What is a meaning of load duration curve.

a)

d)

a)

d)

2.

3.

4. Attempt any THREE of the following:

- Draw the schematic arrangement for a gas power plant. a)
- With a neat diagram explain medium head hydro-electric b) power plants.
- c) With a neat diagram explain solar photovoltaic power plant.
- d) Draw a layout of a thermo-chemical based power plant.
- Define the following term e)
 - Average demand (i)
 - (ii) Load factor
 - (iii) Plant capacity factor
 - (iv) Plant use factor

12

Attempt any TWO of the following: 5. a) With a neat diagram explain pumped storage hydro power plant. b) Draw a diagram of power tower of concentrated solar power plant. c) Give the causes and impact and reasons of grid system fault. Attempt any TWO of the following: 6. 12 Explain the function of different parts of a typical nuclear a) power plant with neat sketch.

- b) What are the criteria for selection of site for hydro electric power plant.
- With a neat diagram explain doubly fed induction generator c) (DFIG).

Winter- 2018 Examinations Model Answer

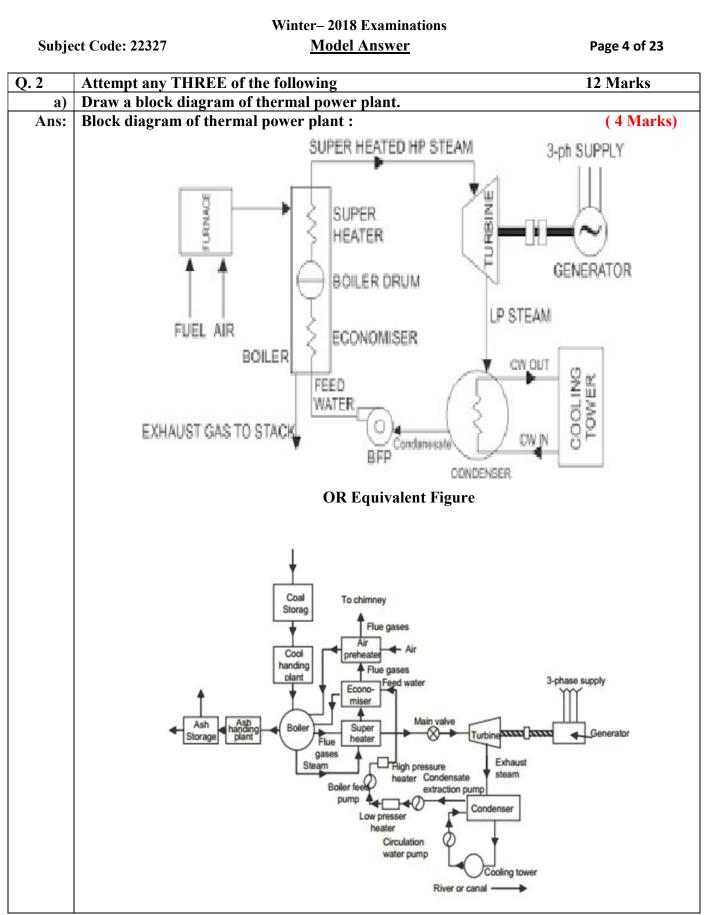
Page 1 of 23

Subject Code: 22327

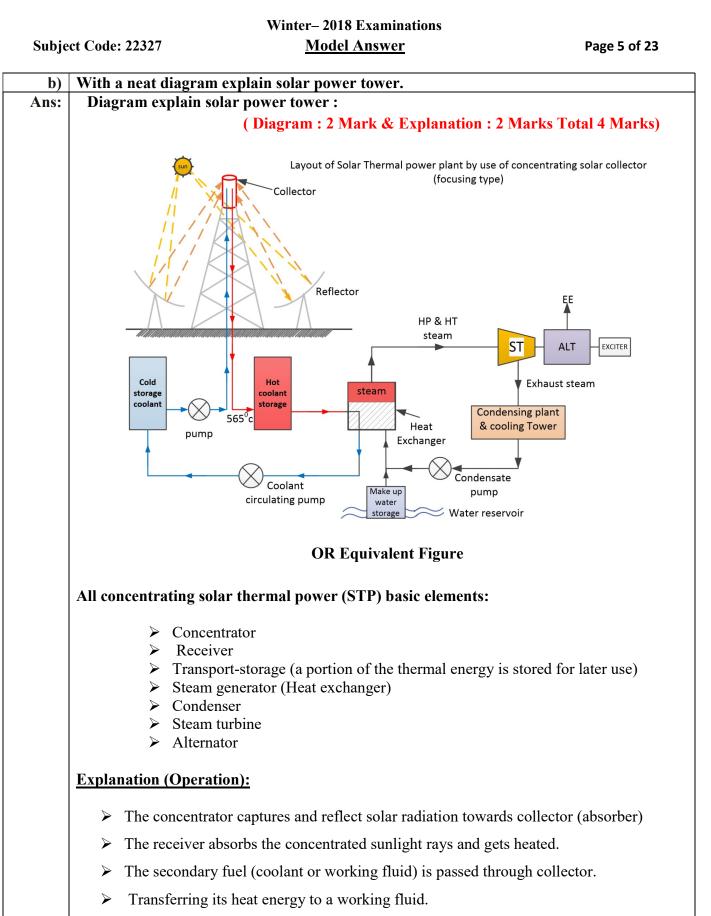
Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Classify the hydro-electric plants according to the head and load basis. Classification the hydro-electric plants According to availability of Head of	of Water:					
Classification the hydro-electric plants According to availability of Head of	of Water:					
	Classification the hydro-electric plants According to availability of Head of Water:					
	(1 Mark)					
1. Very high head power plant						
2. High head power plant						
3. Medium head power plant						
4. Low head power plant						
Classification the hydro-electric plants According to Load basis:						
	(1 Mark)					
1. Base load power plant						
2. Peak load power plant						
ist the types of turbine used in hydro power plant.						
ollowing types of turbine used in hydro power plant:						
	(2 Mark)					
1.Pelton wheel						
2.Francis Turbine						
3.Kaplan Turbine						
4.Propeller Turbine						
	 2. High head power plant 3. Medium head power plant 4. Low head power plant Classification the hydro-electric plants According to Load basis: Base load power plant Peak load power plant 2. Peak load power plant Peak load power plant ist the types of turbine used in hydro power plant. Pelton wheel Francis Turbine Kaplan Turbine 					



Subje	ct Code: 22327	Winter– 2018 Examinations <u>Model Answer</u>	Page 2 of 23
c)		iclear shielding' in Nuclear Power Plant.	
Ans:	Explanation of 'Nucl	ear shielding' in Nuclear Power Plant:	(2 Marks)
	Shielding is	s provided to absorb alpha, beta particles and gama	t rays which are
	produced during nu		
	The function	and animals from the	
	harmful radioactive 1	radiation (pollution).before they are emitted to atm	nosphere.
	Shielding is made fr	rom:-	
	1. Thick layer of Paper	r are provided to stop the alpha particals	
	2. Thick layer of metal	l or Aluminum are provided to stop the beta particl	les
	3. Thick layer of lead of	or concerate wall are provided all around the react	or vessel(3-m thick
	concrete shield) for	r stopping gama rays	
	4. Thick layer of Wate	er or concerate wall are provided all around the rea	ctor vessel for stopping
	neutrons.		
d)	Enlist the nuclear fue	ls.	
Ans:	Following nuclear fue	el are used in nuclear power plant:-	
		(Any Two Name of fuels expe	ected: 1 Mark each)
	1. Natural Uraniu	ım	
	2. Low-enriched	Uranium	
	3. Highly-enriche	ed Uranium	
	4. Fertile Materia	l:-U238 / Th232	
e)		ollectors are used in solar power plant.	
Ans:	Because of following	g advantages concentrating type collector are	used in solar power
	plant: -	(Any two points are expe	ected: 2 Marks)
	1. Temperature:	: Temperature obtained is high because absor	rber area is less and
	collector/ret	flector area is more.	
	2. Heat Losses:	Losses are less as absorber area is small	
	3. Efficiency: E	ifficiency is high	
	4. Heat insulation	on: Heat insulation required is less as absorber are	ea is small.
	5. Anti-freeze p	protection: Little or no anti-freeze protection is	required to protect the
	absorber.		
	6. Used to gene	erate steam electricity: Can be used to generate e	lectricity with the help



Subje	Winter- 2018 Examinationsct Code: 22327Model AnswerPage 3 of 23
	of steam turbine.
	7. Due to tracking better results: As tracking system is used better results are obtain than
	flat type collector.
f) Ans:	Explain the concept of following terms : (i) Connected load (ii) Maximum demand 1. Connected Load: (1 Mark)
Alls.	1. Connected Load:(1 Mark)It is the sum of load of all equipment's connected to supply system which are in
	use or not in use of each consumer. OR
	The sum of connected load of all consumers is the connected to the power station
	-
	or power system. (1 Mark)
	It is the maximum load which a consumer uses at a particular time period out
	of his total connected load.
g)	What is a meaning of load duration curve.
Ans:	Load duration curve:(2 Mark)
	It is drawn from load curve. It is graph of load (MW/KW) arranged in descending order of magnitude with respect to time. OR
	O O O O O O O O O O O O O O O O O O O
	OR Equivalent Figure

Subje	ct Code: 22		Winter– 2018 Examinations <u>Model Answer</u>	Page 6 of 23				
	> Th	nis coolant gets heate	ed to a very high temperature.					
	> This hot coolant is stored in transport-storage system (a portion of the thermal energy is							
	sto	ored for later use). Th	nus solar energy can be used even	when sun rays are not available				
	> Then hot coolant is passed through heat exchanger (steam generator) where steam at							
	high temperature and high pressure is generated.							
	 This secondary fuel (coolant or working fluid) is re-circulated again and again. 							
	➤ T.	his steam at high ten	nperature and high pressure is used	d to run the steam turbine.				
		-	ed with alternator which converts					
		ergy		1				
		chaust steam is cond	ensate in condenser					
c)	Give the	four advantages of	vertical axis wind mills.					
Ans:		tes of vertical axis v		n Advantage: Total 4 Marks)				
	1. Simple blade design							
		. Low cost of fabric	-					
		. No yaw controller						
		•	e because ground mounted generat	or and goar boy				
		. Lasy mantenance	e occause ground mounted general	or and gear box.				
d)	Compare	base load plant wi	th peak load plant. (any four)					
Ans:	(Any Four Point expected : 1 Mark each point Total 4 Marks)							
	Sr.No.	Points	Base load plant	Peak load plant				
	1	Definition	The power plant which supplies base load of load curve is known as base load plant	The power plant which supplies peak load of load curve is known as peak load plant				
	2	Generating capacity	High	Low				
	3	Firm capacity	High	Low				
	4	Working Hours	24 hours	Only during peak load hours				
	5	Cost of	Generally low cost of	Generally high cost of				
		generation/ unit	generation per unit are selected	generation per unit are				
			as base load plant	selected as peak load plant				
	6	Starting time	Both quick & more starting time power plant can be	Quick starting time power plant are selected as a peak				
			selected as a base load plant	load plant				

Winter-2018 Examinations Model Answer

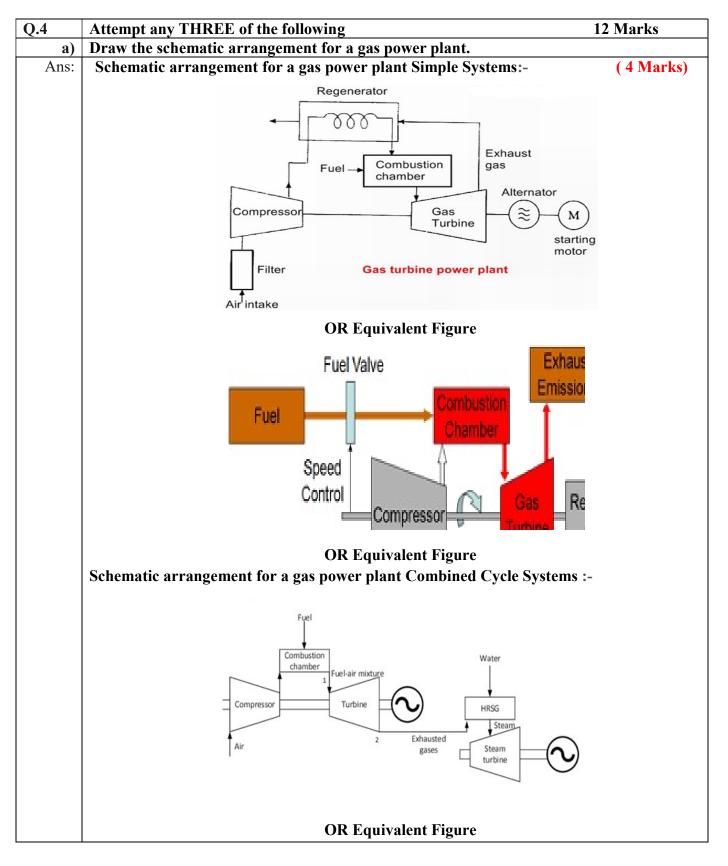
Subject Code: 22327			Model Answer	Page 7 of 23				
-	1 (-				
	7	Load factor	High	Low				
	8	Capacity Factor Plant use factor	High	Low Low				
	9	Examples	High Large capacity hydro, thermal,	Small capacity storage				
		Examples	nuclear power station	hydro, pumped storage				
				hydro, gas, diesel power				
				station.				
Q.3	Attempt	any THREE of the	following	12 Marks				
a)		eat diagram explai of Pelton Wheel:-	n pelton wheel turbine. (Diagram : 2 Marks & F					
	Explana	Fored nozzle	Splitter Side view of the bucket	quivalent Figure				
	The water stored at high head is made to flow through the penstock and reaches the nozzle							
	of the Pelton turbine.							
	The nozzle increases the K.E. of the water and directs the water in the form of jet.							
	The jet of water from the nozzle strikes the buckets (vanes) of the runner. This made the							
	runner to	rotate at very high s	speed.					
	The quantity of water striking the vanes or buckets is controlled by the needle valve							
	present inside the nozzle.							
	The	e generator is attache	ed to the shaft of the runner which o	converts the mechanical energy				
	(i.e. rotat							

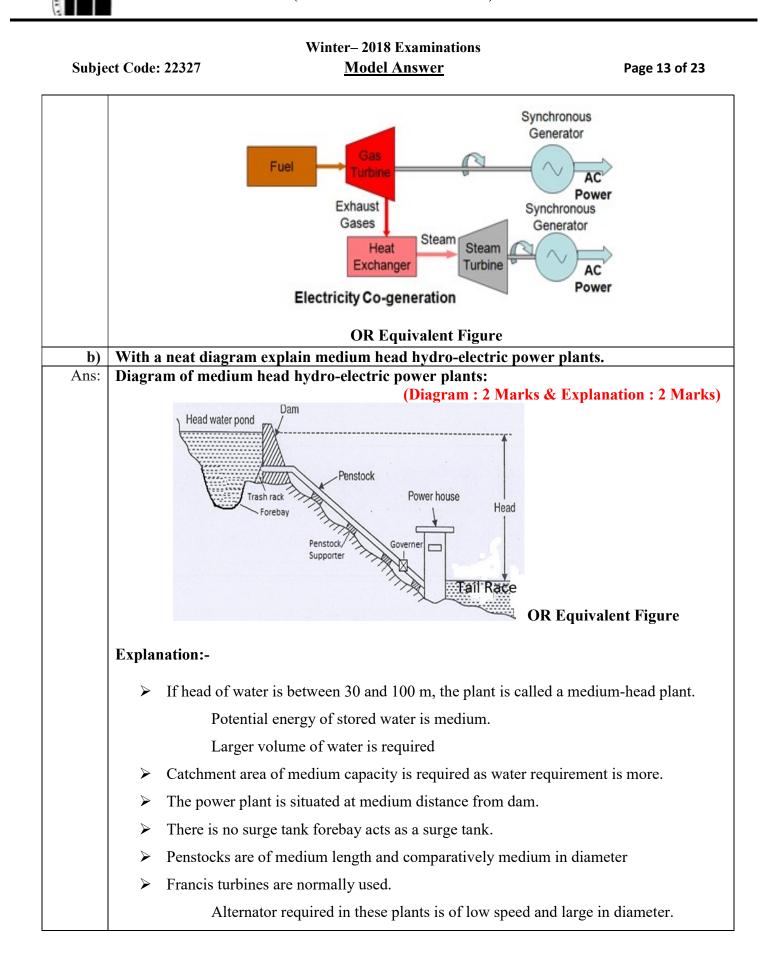
Winter-2018 Examinations

Model Answer Subject Code: 22327 Page 8 of 23 Draw and explain fixed dome type biogas plant. b) Diagram of fixed dome type biogas plant: (Diagram : 1 Marks & Explanation : 3 Marks) Ans: Slurry of cattle ung and water mixture dergroun ne type bio-gas plant. **OR Equivalent Figure** Explanation of layout of biogas plant by the method of fermentation conversion 1. Foundation : Biomass plant consists of pit excavated to desire size & depth, The foundation is nothing but the base of digester. It is made with the help of cement, concrete. 2. Digester: > It is container made up of bricks, sand & cement. Digestor tank is undergrounded to increase the efficiency. > In the digester, decomposition of biomass takes place due to anaerobic bacteria to produce biogas. > Quantity of gas produced is depend open type of waste & temperature. 3. Dome (Balancing Tank) : It is the roof of digestor in which biogas is collected. **Mixing Tank:** 4. It is the tank placed on the top of inlet chamber in which animal, sanitary waste & water are mixed properly to make slurry. 5. **Inlet Chamber:** It is to admit slurry into digesteor chamber through pipe due to gravity. **Outlet Chambers:** 6. When generated biogas is high then it increases pressure downwards to slurry. Due to pressure of gas, slurry comes upward automatically through pipe which is

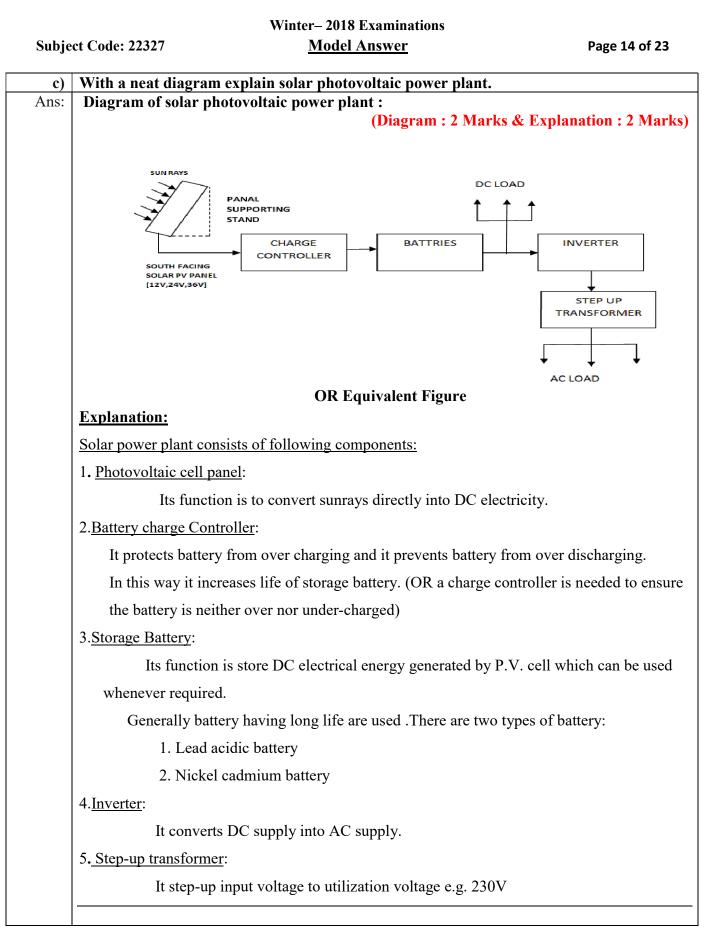
Subje	ct Code: 22327	Winter– 2018 Examinations <u>Model Answer</u>	Page 9 of 23			
	 7. Gas Outlet pipe: It is an outlet pipe utilization. The valve 8. Mixing or Stirring: The decomposition 	amber. slum) left is used as fertilizer (valuable) be fitted at the top of the dome of the digestor e is provided to control the flow of biogas. nposition process can be speed up by stirring help of stirrer which is at digester chamber.				
c) Ans:	Explain Squirrel Cage Induction Generator (SCIG) and also draw a diagram. Diagram of Squirrel Cage Induction Generator (SCIG): (Diagram : 2 Marks & Explanation : 2 Marks)					
	wind speed.SCIG require rThe SCIG take	():- multistage gearbox is used to obtain constant eactive excitation power. as the reactive excitation power from a capacit for terminals of the IG				

Subje	Winter– 2018 Examinations ect Code: 22327 <u>Model Answer</u>	Page 10 of 23				
	 Rotor of SCIG is rotated at <u>more than synchronous speed(i.e.</u> generate emf (to export power)with the help of wind power. 	low negative slip) to				
	Generated voltage is 690 V AC. So it must be step up to 33 KV grid.	to connect to power				
	OR					
	Fixed pitch Fixed pitch Gearbox Gearbox Controlled speed (Nr>Ns) Block diagram of Squirrel Cage Induction Generator (SCIG) Wind power plant (variable speed)	-				
	OR Equivalent Figure					
	Explanation (Operation):-In this system gearbox is used to increase the speed of high speed shaft as per design.					
	 IG require reactive power for excitation. 					
	 Rotor of SCIG is rotated at <u>more than synchronous speed</u> (i.e. low the variable range to generate emf with the help of wind power. 	w negative slip) in				
	It uses AC-DC-AC power converter (Rectifier, Inverter & Filter) to convert frequency, variable voltage output of the generator into the fixed frequency, voltage output required for grid.					
d)	Explain the choice of size and number of generator units in a power plant selection of Size and Number of Concreting Units:	lant.				
Ans:	Selection of Size and Number of Generating Units: (Any Four Point expected : 1 Mark eac	h• Total 4 Marks)				
	1. The size/rating and number of generating units in such way that t					
	match with the load curve/load duration curve as closely as poss					
	2. In order to calculate the size of the units, the station auxiliary loa					


Subject Code: 22327	Winter– 2018 Examinations <u>Model Answer</u>	Page 11 of 23
to account	t.	
3. Also the tr	ansmission line losses should be considered. It ca	an be approximately taken
as 20 % o	f the consumer load.	
4. The future always inc	demand and expansion should also be considered creases.	d as the load on the station
_	must have some reverse capacity at least 15-20 % conditions.	ó more than M.D. under
6. Select size will be mo	/rating of generating units in such way that reliab ore.	oility to maintain supply
	/rating of generating units in such way that the pl ersity factor, plant use factor will be more.	lant capacity factor, load
8. Select size	/rating of generating units in such way that unit a h gives maximum efficiency.	almost run at full load or at
9. Select size economic	/rating of generating units in such way that powe al.	er generation will be
10. Initial and	operating cost also to be taken in to account	
11. Space requ	ired also to be considered.	
12. The minim	num number of units should be two.	
13. As far as p	possible, the units of equal capacities are selected	l which will have
following	advantages.	
ii) Th iii) T iv)Th	e parts can be interchanged. ne maintenance will be easier. he working time of each plant regulated. ne spare parts required to be stored are less. ing the size/rating and number of generating units	s there are two options
ii) To rating	select single generating unit of large capacity o select more numbers of small capacity generatings or different ratings.	-
Both 15. In summary,	options have its own advantages and disadvantage	ges.
Load	I on the power system is variable where reliability r practicable nor economical to use a single unit of But, if power plant is connected to grid system	of large capacity.
higher cap	acity can be installed.	


Subject Code: 22327

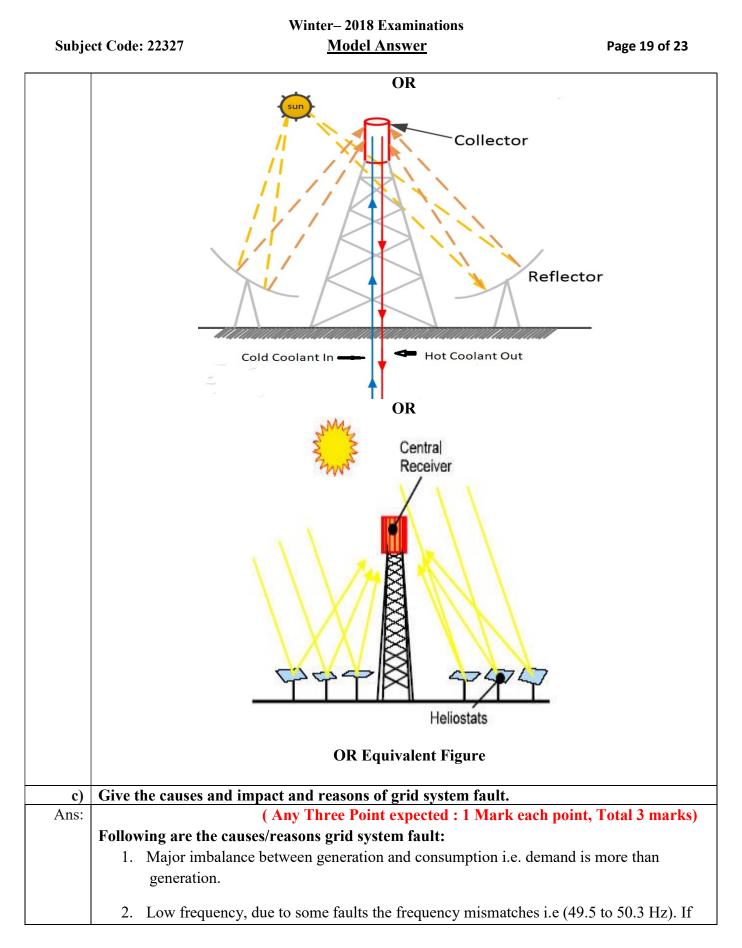
Winter- 2018 Examinations Model Answer


Page 12 of 23

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

Winter-2018 Examinations Subject Code: 22327 **Model Answer** Page 15 of 23 Draw a layout of a thermo-chemical based power plant. d) Layout of a thermo-chemical based power plant: Ans: (4 Marks) In this process dry biomass fuels converted to produce gas ,liquid fuels or oil by thermo chemical conversion Thermo-Chemical conversion are of following ways:-1. Direct combustion 2. Gasification 3. Pyrolysis Pollution Exhaust Cooling Control Gases Water Water Steam Condenser Direct mbusti Pump Synchronous Steam Generator Valve ficat Chamber Steam Steam Boiler Turbine AC Power lysis Speed Control **OR Equivalent Figure** Define the following term: i) Average demand ii)Load factor iii)Plant capacity factor e) iv) Plant use factor (Each definition 1 mark, Total 4 Marks) Ans: i) Average Demand :-(1 Mark) The average of loads occurring on the power station in a given period (day or month or year) is known as Average load or Average demand. OR Number of units generated (KWH) in one day Daily Average Demand = Number of hours in a day (24 hours) OR Number of units generated (KWH) in month Monthly Average Demand = Number of hours in a month OR Number of units generated (KWH) in one Year Yearly Average Demand = Number of hours in one year

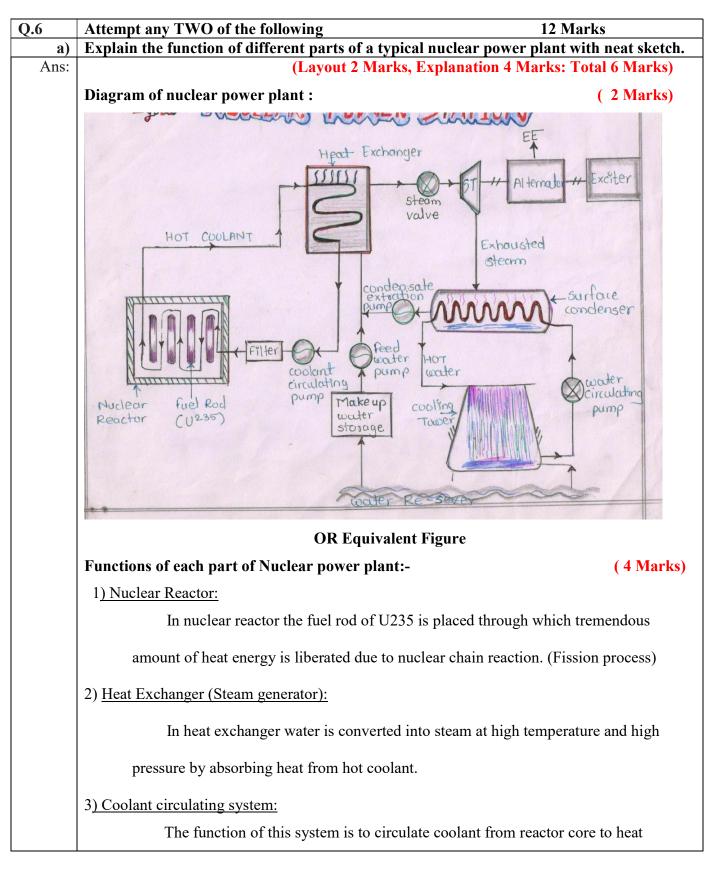
Subject Code: 22327	Winter– 2018 Examinations <u>Model Answer</u>	Page 16 of 23
ii) Load Factor: -		(1 Mark)
It is the rati	o of average demand /load to maximum d	lemand during given period
is known as Load Fact	or.	
	OR	
Load Factor	= Average Demand (load) Maximum demand (load)	
	OR	
Daily Load Easter	Number units generated in	1 Day
Daily Load Factor	$= \frac{1}{Number of hours in a day (24 hours) \times}$	
	OR	
Monthly load Facto	$or = \frac{Number of units generated (KW)}{Number of hours in g month x Mar}$	H) in month
	$\frac{1}{N}$ Number of hours in a month \times Max	ximum Demand
	OR	
Vecular les d'Es stor	= <u>Number of units generated (KWH)</u>	n one Year
Yearly load Factor	Number of hours in one year (8760	$\overline{(\mathrm{DH}) \times \mathrm{M.D}}$
iii) Plant capacity factor	r:	(1 Mark)
"The net ca	apacity factor of a power plant is the ratio	o of its actual output over a
period of time, to its	s potential output if it were possible for it	to operate at full nameplate
capacity indefinitely	7.	
	OR	
It is the rat	tio of actual energy produced (generated)) to the maximum possible
energy that could ha	we been produced (generated) during a give	ven period.
	OR	
Plant Cap	acity Factor = $\frac{\text{Energy that is produced}}{100 \text{ model}}$	
	Maxium energy that can be	
	Plant Capacity Factor = $\frac{\text{Average demand}}{\text{Plant Capacity}}$	
Dlant agrasite for	ctor = Actual energy generated	
Plant capacity fac	$\frac{\text{Actual energy generated}}{\text{Maximum possible energy (KWH) that could}}$	have been generated


		Winter-2018 Examinations	
Subje	ect Code: 22327	Model Answer	Page 17 of 23
	iv) Plant use Fa	ictor:-	(1 Mark)
] 7	The definition such that the ratio becomes the am	ount of energy used divided
	by the	e maximum possible to be used .	
		It is the ratio of number of unit (kWh) gen	nerated to the product of plant
	capaci	ty and the number of hours for which plant was i	in operation.
		OR	
		<i>is a plant up factor</i> Station output in k	Wh
		<i>i.e plant use factor</i> = $\frac{Station output in k}{Plant capacity \times hours}$	s of use
		OR	
		Plant Use Factor = $\frac{\text{Actual energy produced}}{\text{Installed Capacity (kW)} \times \text{no.of operation}}$	(kWh) eration hours(h)
		Or	
		Plant Use Factor = $\frac{\text{Average Demand} \times \text{Installed Capacity} \times \text{no. of open}}{\text{Installed Capacity} \times \text{no. of open}}$	T rating hours
		Where	
		T = 24 h if the time is a day	
		$T = 24 \times 30 h$ if the time is a Month	
Q.5	Attempt any T	WO of the following	12 Marks
a)		gram explain pumped storage hydro power p	
Ans:	Diagram of pu	nped storage hydro power plant:	
			ks & Explanation : 3 Marks)
			Head water Dam Pond

Subje	Winter- 2018 Examinationsect Code: 22327Model Answer	Page 18 of 23
	 Explanation: In this power plant, generator is so designed that it Converts electrical power and also works as a motor i.e. converts electrical power of power And water turbine is so designed that when it is rotated then it pump. Following are the Advantages of Pumped storage Power Plant (PH 1. It saves water by reusing same water again & again. 2. There is less expenditure during pumping of water because water i (extra) power is available. 3. It can be put into service immediately; hence it is useful to supply period. 4. It increases load factor of power plant 5. It helps in reducing a reserve capacity of PP as it provides addition 	wer into mechanical works as a centrifugal PP): s pumped when surplus power during peak load
b)	load period. Draw a diagram of power tower of concentrated solar power plant.	
Ans:	Layout of Solar Thermal power plant by use of conce (focusing type) Collector Reflector HP & HT steam ST	ALT EXCITER haust steam

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

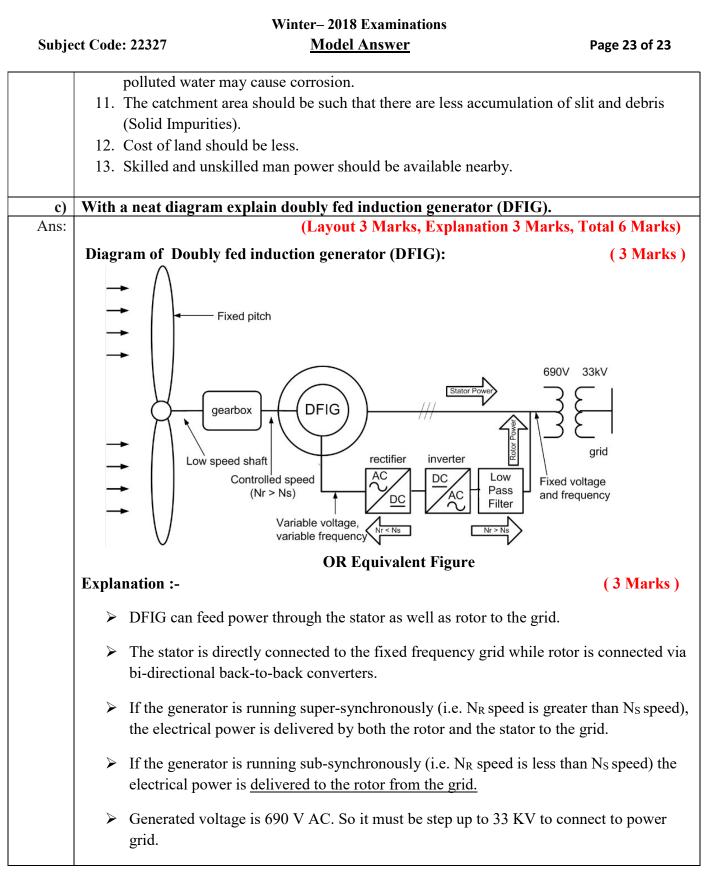
Subject Code: 2	Winter- 2018 Examinations22327Model Answer	Page 20 of 23
	the frequency is falls or above the permissible limit then, there is possi of power grid. If fault is not clear in permissible time.	bility of failure
	Due to breaking of conductor or due to short circuit between two conductors which leads to failure of grid. If we cannot clear this fault in les millisecond.	
4. 1	Power surges causes rapid overheating tends to lead failure of grid.	
	Minor fault in high voltage equipment's if not attended over a period of a total breakdown of equipment suddenly causing grid failure.	f time results in
	Illegal utilization of electricity (theft of energy) is also a major reason f failure.	for power grid
	Ageing of power equipment's have higher failure rates increases the ris breakdown.	sk of frequent
8. 1	Due to failure of grid connected one of the generator units suddenly.	
	Then load is shifted to other generator causes cascade tripping due to	over loading.
	Due to ineffective power delivery planning, co-ordination, supervision generation system causes failure of grid (Due to ineffective work of Ll	
Impact	t of grid system fault:	
	(Any Three Point expected : 1 Mark each point,	Total 3 marks)
1. /	All industries are badly affected due to failure of supply and causes hug	ge losses.
	All health care centers (Major hospitals) are badly affected due to failu causes disturbance in treatment on emergency patients.	re of supply and
	Drinking water supply system are badly affected due to failure of supplinsufficient/no water supply.	ly and causes
	All electrical long route trains, local trains, tramways, metro and railwa are badly affected due to failure of supply and causes inconvenience.	ay signal system
	All communication system is badly affected due to failure of supply an inconvenience to people.	d causes
6.1	Disturb the routine work of common all people.	



Winter-2018 Examinations

Subject Code: 22327

Model Answer


Page 21 of 23

Subje	vect Code: 22327	Winter– 2018 Examinations <u>Model Answer</u>	Page 22 of 23
	exchanger. It consists o	of circulating pump and filter.	
	4) Condensing Plant:		
	Function of condenser	is to convert exhaust steam again into w	vater by reducing its
	temperature with the he	elp of cold water. Also it reduces back p	pressure of steam turbine.
	5) <u>Cooling tower:</u>		
	The function of cooling tov	wer is to reduce the temperature of wate	r coming from
	condenser.		
	6) <u>Steam valve:</u>		
	Function of Steam valv	ve (Governor)is to control the flow of ste	eam in such way that
	speed of turbine remain	ns constant at all loads condition to main	ntain constant frequency.
	7 <u>) Steam turbine:</u>		
	Its function is it conver	ts heat energy into mechanical energy.	
	To drive alternator this	is mechanically coupled with steam tur	bine.
	8) <u>Alternator:</u>		
	It converts mechanica	l energy into electrical energy.	
b)	What are the criteria for sele	ection of site for hydroelectric power j	plant?
Ans:		while site selecting for Hydro power	-
	(AI	ny Six Point Expected : 1 Mark each l	Point :Total 6 Marks)
	1. It should be located whe	ere high rain fall occurs.	
	e e	must be available to store water.	
	3. It should be located as fa and water reservoir.	ar as possible in hilly area to reduce con	struction cost of dam
		ve a reasonable head (Potential Energy).	
	5. There should be easy ac		
	6. Land should have high b better foundation of mac	bearing capacity to reduce the constructic	ion cost of dam and for
	 Power plant should be lo line cost and losses in it. 	ocated as far as possible near load center.	r to reduce transmission
	8. During the construction	of dam, it should be possible to divert the	he stream of river.
	9. The Area should be free	from earthquake and natural hazards.	
	10. It is necessary to see that	t water is of good quality (i.e.no chemic	cal impurities) because

2181	9				
3 Ho	ours /	70	Marks	Seat No.	
Instri	uctions –	(1)	All Questions	s are <i>Compulsory</i> .	
		(2)	Answer each	next main Question on a new page.	
		(3)	Illustrate your necessary.	ar answers with neat sketches wherever	
		(4)	Figures to the	e right indicate full marks.	
		(5)	Assume suita	able data, if necessary.	
		(6)	Use of Non-p Calculator is	programmable Electronic Pocket permissible.	
		(7)		e, Pager and any other Electronic on devices are not permissible in Hall.	
				Mark	KS
1.	Attempt	t any	<u>FIVE</u> of the	e following: 1	0
a)	Define t	fissior	n and fusion r	related to nuclear fuel.	
b)	•	•	opower plant of for them.	on the basis of water head and state	
c)	State any	y two	advantages of	f Kaplan turbine over Francis turbine.	

- d) List different types of concentrating type solar collectors.
- e) State the various types of Biomass Resources.
- State range of wind speed is considered favorable for wind f) power generation.
- g) Define the term "cold reserve" and "hot reserve".

2. Attempt any <u>THREE</u> of the following:

- a) Describe Nuclear Hazards and various ways of disposal of nuclear waste.
- b) Draw schematic arrangement of hydro electric power station and describe energy conversion process of hydro power plant.
- c) Describe main features of various types of generators and their suitability w.r.t wind power generation.
- d) State the causes and impacts of state grid system fault.

3. Attempt any THREE of the following:

- a) Compare fire tube and water tube boilers used in thermal power plants.
- b) Describe safe practices for hydro power plants.
- c) Describe with layout the working of solar Photo Voltaic (PV) power plant.
- d) State the various problems caused during operation of large wind power generators.

4. Attempt any <u>THREE</u> of the following:

- a) Draw schematic arrangement of diesel engine power station and important systems and essential components of diesel plant
- b) Explain layout of thermo-chemical based (Municipal waste) power plant.
- c) Compare Horizontal axis and vertical axis wind machine on the basis of
 - (i) Power captured for the same tower height.
 - (ii) Noise problem.
 - (iii) Complexity of design and yaw mechanism
 - (iv) Effect of fatigue arising from numerous resonance in structure.

- d) Define the terms:
 - (i) Load factor
 - (ii) Diversity factor
 - (iii) Demand factor
 - (iv) Plant capacity factor.
- e) Explain how load curves helps in the selection of size and number of generating units.

5. Attempt any <u>TWO</u> of the following:

- a) Explain with layout the working of typical thermal power plant with steam turbines and electric generators.
- b) Explain with neat sketch the construction and working of pelton turbine used in hydro power plant.
- c) Explain with neat sketch, layout of Bio-chemical based (biogas) power plant.

6. Attempt any <u>TWO</u> of the following:

- a) Draw the layout of typical micro hydro scheme and describe potential locations of micro-hydro power plants in Maharashtra.
- b) Explain with layout, the working of parabolic trough collector concentrated solar power plants.
- c) A load on a power plant on a typical day is as under:-

Time	12-5 AM	5-9 AM	9-6 PM	6-10 PM	10PM-12AM
Load in MW	20	40	80	100	20

Plot the chronological load curve and load duration curve. Find the load factor of the plant and energy supplied by the plant in 24 hours.

12

SUMMER– 2019 Examinations Model Answer

Page 1 of 27

Important suggestions to examiners:

Subject Code: 22327

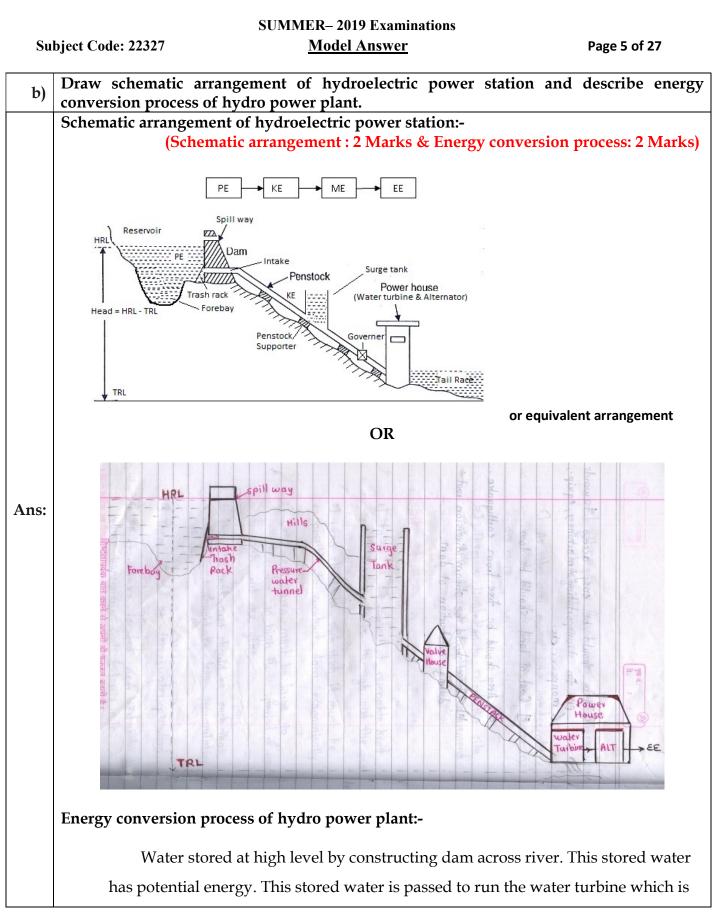
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following	10 Marks				
a)	Define fission and fusion related to nuclear fuel.					
Ans:	1. By breaking up heavy nuclei into nuclei of intermediate size, the process being					
	known as fission.	(1 Mark)				
	OR					
	The process in which heat energy is released without using oxygen for combustion					
	in process is known as nuclear Fission .					
	2. By combining light nuclei, the process being known as fusion.	(1 Mark)				
	OR					
	Fusion is the fussing of two or more small atoms into a larger one to,	produces heat				
	energy.					
b)	Classify hydropower plant on the basis of water head and state turbine	used for them.				
Ans:	Classification the hydro-electric plants According to availability of Head	of Water:				
		(1 Mark)				
	1. Very high head power plant					
	2. High head power plant					
	3. Medium head power plant					
	4. Low head power plant					

Su	SUMMER- 2019 ExaminationsIbject Code: 22327Model AnswerPage 2 of 27
	Following types of turbine used in hydro power plant:(1 Mark)
	1. Pelton wheel for Very high head power plant and High head power plant
	(300 mtr. And above)
	2. Francis Turbine for high head power plant and medium head power plant
	(Up to 300 mtr.)
	3. Kaplan Turbine for Low head power plant (below 40-15 mtr.)
	4. Propeller Turbine for Low head power plant (below 15 mtr.)
c)	State any two advantages of Kaplan turbine over Francis turbine.
Ans:	Advantages of Kaplan turbine over Francis turbine:-
	(Any Two advantages expected: 1 Mark each, Total: 2 Marks)
	1. Runner vanes are adjustable
	2. Very low head of water is required
	3. It has very small number of blades 3 to 8
	4. Very less resistances have to be over come
	5. Position of shaft is only in vertical direction so space required is less
	6. In this turbine the speed of the rotor is much greater than the speed of the water,
	almost double.
d)	List different types of concentrating type solar collectors.
Ans:	Following types of concentrating type solar collectors:
	(Any TWO Point expected : 1 Mark each point, Total 2 Marks)
	1. Non- concentrating Type:-
	a) Flat plate collectors (FPC)
	b)Evacuated Tubular collector (ETC)
	2. Concentrating type collectors (focusing type collector):
	a) Line Focusing: - Linear cylindrical Parabolic (troughs) concentrating collector (CC)
	b) Point Focusing: -
	 Central receiver Spherical (Dish) Parabolic concentrating Collector (CC) Central receiver solar tower with number of distributed Concentrating collector

Su	SUMMER- 2019 Examinationsbject Code: 22327Model AnswerPage 3 of 27
e)	State the various types of Biomass Resources.
Ans:	Following are the various types of Biomass Resources:-
	(Any Four types expected: 1/2 mark each, Total: 2 Marks)
	1. Bagasse
	2. Agriculture residual
	3. Forestry residual
	4. Energy trees/ crop plantation
	5. Dead trees and tree branches
	6. Wood processing industrial waste
	7. Food processing industrial waste
	8. Residential, commercial and industrial waste
	9. Peel
	10. Coconut shell , ground nut shell
	11. Vegetables waste
	12. Animal waste
	13. Sanitary waste
	14. molasses waste
	15. Fishery waste
	16. Sewage
	17. Manure etc.
f)	State range of wind speed is considered favorable for wind power generation.
Ans:	Range of wind speed is considered favorable for wind power generation is:- (2 Marks)
	14.4 to 16.2 Km/hour
g)	Define the term "cold reserve" and "hot reserve".
Ans:	i) Cold reserves: (1 Mark)
	It is stand by generating capacity which is available for service but not in operation.
	ii) Hot reserve: (1 Mark)
	It is reserve generating capacity, in operation but not in service (not connected to busbar/grid)
	It is reserve generating capacity, in operation but not in service (not connect busbar/grid)

SUMMER- 2019 Examinations


Subject Code: 22327

Model Answer

Page 4 of 27

Q. 2 Attempt any THREE of the following a) Describe Nuclear Hazards and various ways of disposal of nuclear v Ans: > Nuclear hazards: The waste produced in nuclear power plant is in the form of solid, liqu are radioactive. These are very harmful to human being, animals, em nature, if it is not carefully disposed off. > Various ways of disposal of nuclear waste:- (Any TWO Point expected : 1 Mark each po > Solid Waste Disposal:- • Solid wastes removed from the reactor are very hot and radioac • Solid waste is filled in a sealed container. • And is kept under water for 5 to 10 years under supervision to remove the sup	(2 Marks) uid & gases, these vironment and oint, Total 2 Marks)
 The waste produced in nuclear power plant is in the form of solid, liquare radioactive. These are very harmful to human being, animals, emperature, if it is not carefully disposed off. Various ways of disposal of nuclear waste:- (Any TWO Point expected : 1 Mark each point expect	uid & gases, these vironment and oint, Total 2 Marks)
 are radioactive. These are very harmful to human being, animals, emnature, if it is not carefully disposed off. Various ways of disposal of nuclear waste:- (Any TWO Point expected : 1 Mark each point expected : 1 Mark eac	vironment and vint, Total 2 Marks)
 (Any TWO Point expected : 1 Mark each po Solid Waste Disposal:- Solid wastes removed from the reactor are very hot and radioad Solid waste is filled in a sealed container. And is kept under water for 5 to 10 years under supervision to p 	ctive <u>.</u>
 Solid Waste Disposal:- Solid wastes removed from the reactor are very hot and radioad Solid waste is filled in a sealed container. And is kept under water for 5 to 10 years under supervision to part of the sealed container. 	ctive <u>.</u>
 Solid wastes removed from the reactor are very hot and radioad Solid waste is filled in a sealed container. And is kept under water for 5 to 10 years under supervision to p 	-
 Solid waste is filled in a sealed container. And is kept under water for 5 to 10 years under supervision to a 	-
• And is kept under water for 5 to 10 years under supervision to a	raduca its
temperature.	1 1
The solid waste container is buried deeply in the ground by ma	5
however the area must be unused land, away from populated a rain fall in that area.	area and there is less
Liquid Waste Disposal:-	
The liquid waste is diluted to a sufficient level by add water.	ing large quantity of
The liquid waste after analysis (concentration of radio measured.) is sealed in a container.	oactive material are
• Then it is disposal off into the sea, several kilometers a	away from sea shore.
Gaseous Waste Disposal:-	
 Gaseous wastes are generally diluted with adding air And passed through high efficiency filter. 	
 And passed through high enciency liner. Then passed through radiation monitoring system. 	
In this system concentration of radioactive material a	re measured.
If it is safe then released to atmosphere at high level t chimney.	

Su	SUMMER- 2019 Examinationsubject Code: 22327Model Answer	Page 6 of 27
	located at lower level through penstock.	
	Thus potential energy of water is converted into	kinetic energy in penstock
	and turbine converts kinetic energy into mechanical e	nergy and Alternator is
	coupled to water turbine which converts mechanical e	energy into electrical energy.
c)	Describe main features of various types of generators an power generation.	d their suitability w.r.t wind
Ans:		er generation :-
	(Any TWO Point expected : 1 Mark of	each point, Total 2 Marks)
	1. Generator should be robust in construction	
	2. It should have less maintenance and long life	
	3. It should have high efficiency	
	4. Generator may be AC or DC.	
	5. Generator may be constant speed or variable speed.	
	6. Gearbox used may be single stage or multistage.	
	7. Some generators are direct driven (No gear box)	
	8. Synchronous generators are using permanent magnet	s (PM) did not require
	external DC excitation	
	9. Synchronous generators required external DC excitation	on if PM are not used
	10. Induction Generators requires reactive power for exci	tation.
	In case of standalone loads, a capacitor bank is used to	o provide the magnetising
	current and hence establish the magnetizing flux. If it	is connected to the electrical
	grid, then the magnetizing current is taken from the g	rid.
	11. For variable voltage and variable frequency output of	generators AC-DC-AC power
	converters are used to obtain constant voltage and con	nstant frequency supply.
	12. The power output of generator (690V as a rated voltage	ge value) fed to a transformer,
	which converts to the typically 33 kV.	
	Suitability w.r.t wind power generation:-	

SUMMER-2019 Examinations Subject Code: 22327 **Model Answer** Page 7 of 27 (Any TWO Point expected : 1 Mark each point, Total 2 Marks) 1. Salient poles are more used in low-speed machines and therefore may be the most useful version for application to direct-drive wind turbines. 2. In small wind turbines SCIG are used and 3. For large wind turbine doubly fed induction generators are used **4.** For small capacity PMSG are used 5. Now a days large capacity wind turbine uses multi pole permanent magnets (PM) direct driven (No gear box) synchronous generators 6. Variable speed Generator is preferred over constant speed generator. State the causes and impacts of state grid system fault. d) (Causes 2 Marks and Impacts 2 Marks) Ans: Following are the causes state grid system fault: (Any TWO Point expected : 1 Mark each point, Total 2 Marks) 1. Major imbalance between generation and consumption i.e. demand is more than generation. 2. Low frequency, due to some faults the frequency mismatches i.e. (49.5 to 50.3 Hz). If the frequency is falls or above the permissible limit then, there is possibility of failure of power grid. If fault is not clear in permissible time. 3. Due to breaking of conductor or due to short circuit between two conductors fault occurs which leads to failure of grid. If we cannot clear this fault in less than 1000 millisecond. 4. Power surges causes rapid overheating tends to lead failure of grid. 5. Minor fault in high voltage equipment's if not attended over a period of time results in a total breakdown of equipment suddenly causing grid failure. 6. Illegal utilization of electricity (theft of energy) is also a major reason for power grid failure. 7. Ageing of power equipment's have higher failure rates increases the risk of frequent breakdown.

SUMMER- 2019 Examinations <u>Model Answer</u>

Page 8 of 27

	8. D	ue to failure of grid connected one o	f the generator units suddenly.					
	Then load is shifted to other generator causes cascade tripping due to loading.							
	9. Due to ineffective power delivery planning, co-ordination, supervision and control over generation system causes failure of grid (Due to ineffective work of LDC).							
	Impact	of state grid system fault:						
		(Any TWO Point expecte	ed : 1 Mark each point, Total 2 Marks)					
	1. A	ll industries are badly affected due t	o failure of supply and causes huge losses.					
		ll health care centers (Major hospital nd causes disturbance in treatment c	s) are badly affected due to failure of supply on emergency patients.					
		prinking water supply system are bac auses insufficient/no water supply.	lly affected due to failure of supply and					
	4. All electrical long route trains, local trains, tramways, metro and railway signal system are badly affected due to failure of supply and causes inconvenience.							
	5. All communication system is badly affected due to failure of supply and causes inconvenience to people.							
	6. Disturb the routine work of common all people.							
Q.3	Attempt	any THREE of the following	12 Marks					
a)	Compar	e fire tube and water tube boilers u						
Ans:		(Any Four Point expected : 1 P	Mark each point Total 4 Marks)					
	Sr.No.	Fire tube Boilers	Water tube Boilers					
	1	In fire tube boilers hot gases are	In these boilers water is inside the					
	passed through the tubes and tubes and hot gases are outs							
	water surrounds these tubes. tubes.							
	2	Steam at low pressure and low	Steam at high pressure and high					
		temperature is generated.	temperature is generated.					
	3	Rate of steam generation per hour is less.	Rate of steam generation per hour is more.					
4 Steaming time is very more. Steaming time is very less.								

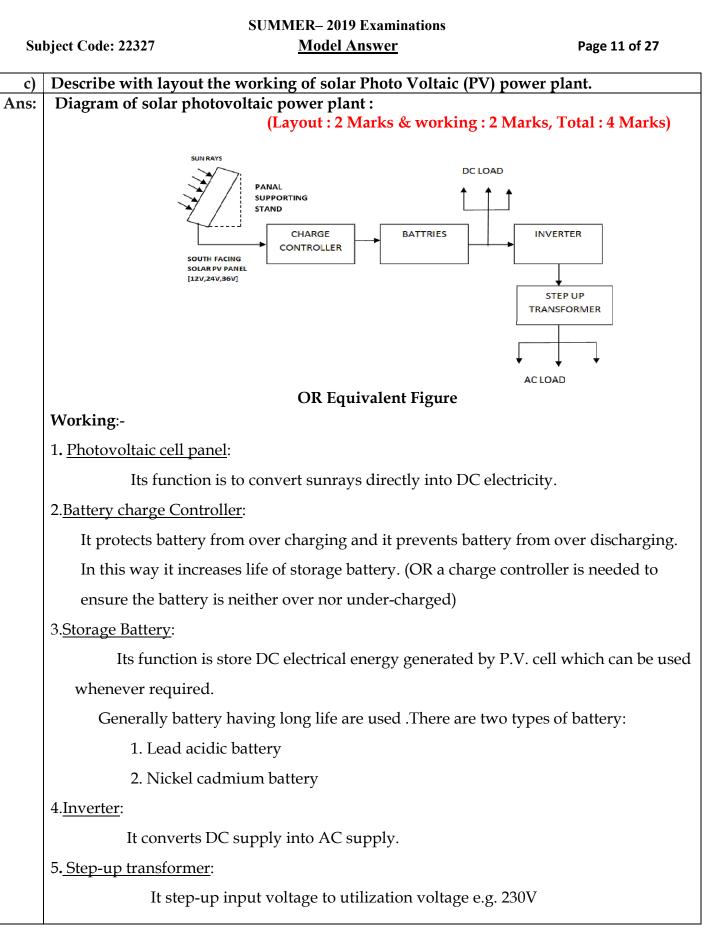
SUMMER- 2019 Examinations

Subject Code: 22327

Model Answer

Page 9 of 27

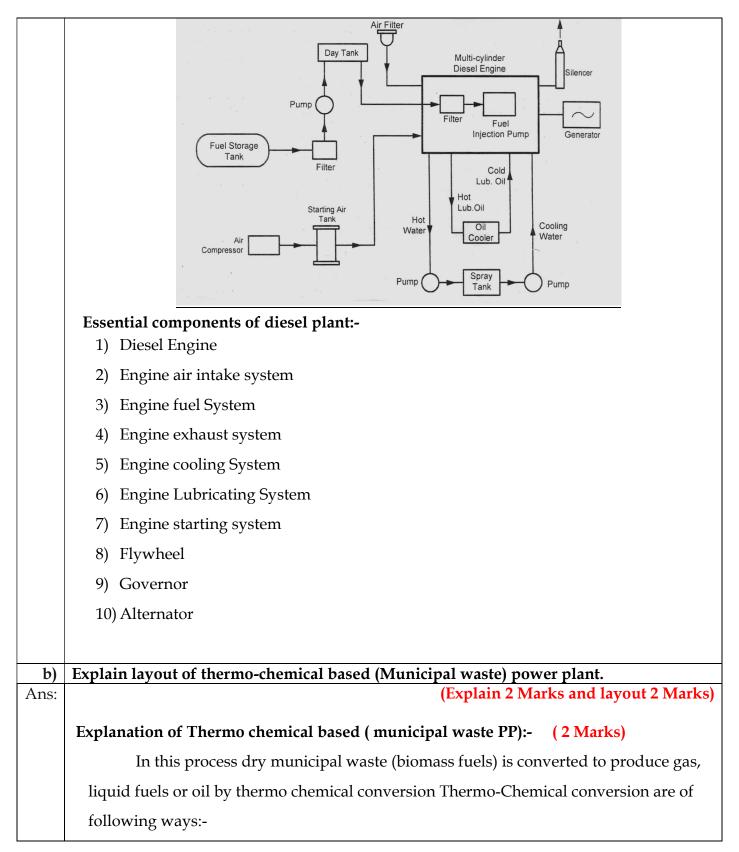
[]						
	5	The output of the boiler is not	The output of the boiler is high.			
		high.				
	6	Low efficiency.	High efficiency.			
	7 Less control on temperature of Better control on temperature of					
		steam.	steam.			
	8	Not respond quickly to change in	Respond quickly to change in steam			
		steam demand.	demand.			
	9	Its weight is more.	Its weight is less.			
	10	Less risk of explosion due to low	Risk of explosion is more due to			
		pressure.	high pressure.			
	11	Not suitable for large capacity	Suitable for large capacity thermal			
		thermal power plant.	power plant.			
	L	atomini ponte pluite.				
b)	Describ	e safe practices for hydro power pla	nts			
Ans:		ing are the safe practices:-	1105.			
A115.	10110 001	ing are the sale plactices				
		(Any four point expe	cted: 1 Mark each, Total : 4 Marks)			
	1. The Personal Protective Equipment (PPE) / protective devices made available for individual or collective use of the workers likely to be affected by the hazards of the workplace or process.					
	2. Not to allow any worker to work in an unsafe condition, nor with unsa equipment					
	3. Sufficient number of Supervisors shall be appointed for adequate and cor supervision at all times and in all workplaces					
		All workers are protected from the have over the have over the out by others, in the vicing out by others of the vicing over the second	azards, arising out of their work or due to the nity			
		Safety training shall be provided to all jualifications and experience	employs Appoint a Safety Officers with the			
	-		ecial meetings and talks shall be organized.			
	7. E	Emergency action plan should be read	ly to deal with fire and explosion			
		Power plant should be protected aga of lightning arrestor.	inst lightning stroke i.e. use appropriate type			
		Barricades, warning sign, safety po mportant locations	osters should be provided to hazards and			



SUMMER– 2019 Examinations Model Answer

Page 10 of 27

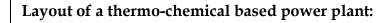
- 10. Station should have at least two independent ways to exit. If one route becomes inaccessible, an alternative emergency escape route should always be available. Adequate lighting is essential for emergency escapes. 11. During flood there should be provision of automatically stop the hydro plant. 12. Plant should be inspected from OSHA and NFPA organization OR Following are the different protection provided to HPP for safety:-1. Fore bay:-It serves the following function is-> It store rejected water immediately when load on turbine reduces so it avoid water hammer effect in penstock and protect the penstock. > It avoids cavity effect in penstock when load on turbine increases (Because it immediately supplies the water). > It acts as buffer storage of water during flooding which increases the safety of dam. 2. Trash rack (Screen/ Booms):-> It avoids entry of debris (solid particles, large fish, and ice) going towards the turbine. > It avoids choke up of penstock and damage to turbine. 3. Spillways: -> It discharge excess water from reservoir when the water exceeds the storage capacity of reservoir. ▶ It avoids damage to dam due to excess pressure of water. \blacktriangleright It acts as a safety valve to the dam. 4. Protection provided to penstock: Surge Tank or fore bay
 - Automatic butterfly valve
 - > Air valve
 - 5. Surge tank:--
 - It protects penstock from water hammer effect when load on turbine reduces (Because it immediately stores the rejected water).
 - It avoids cavity effect in penstock when load on turbine increases (Because it immediately supplies the water).


SUMMER-2019 Examinations Model Answer

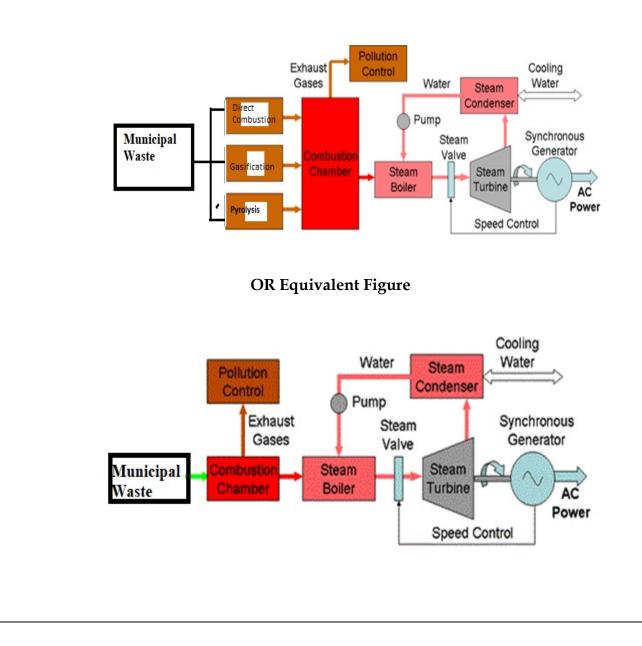
Sul	Dject Code: 22327Model AnswerPage 12 of 27					
d)	State the various problems caused during operation of large wind power generators.					
Ans:	Following are the various problems caused during operation of large wind power					
	generators: (Any four point from following or equivalent are expected: 1 Mark each,					
	Total: 4 Marks)					
	1. Wind turbine produces noise during operation					
	It kills the large birds and bats some time when the birds collide to the turbine blades					
	3. Wind turbine structures, can interfere with communication / radar signals					
	when these signals interrupted by the turbine structure or the rotor.					
	4. Wind turbines can cause problems with television reception					
	5. Wind turbine produces Shadow flicker can be annoying (disturbing) when					
	the shadow of moving turbine blades fall on a house/ground at certain					
	times of the day and year.					
	6. Output voltage content harmonics if converters are used					
	7. The regular blocking and unblocking of the direct sun-light by the rotating					
	turbine blades.					
Q.4	Attempt any THREE of the following 12 Marks					
	Draw schematic arrangement of diesel engine power station and important systems and					
a)	essential components of diesel plant					
Ans:	Schematic arrangement of diesel engine power station :					
	(Schematic arrangement: 2 Mark & Essential Components: 2 Mark. Total 4 Marks)					
	Air from Almesphere Exholes (Fust Bresst pump Storage pump Greger pump Bresst pump Greger pump Bresst pump Greger pump Bresst pump Greger pump Bresst pump					

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 13 of 27


SUMMER– 2019 Examinations <u>Model Answer</u>

Page 14 of 27


- 1. Direct combustion
- 2. Gasification
- 3. Pyrolysis

Subject Code: 22327

Which can be used to produce heat energy. This heat energy is used to produce high pressure and high temperature steam. This steam is used to run the steam turbine. Steam turbine is coupled with generator to produce electrical energy.

(2 Marks)

SUMMER-2019 Examinations

Subject Code: 22327

Model Answer

Page 15 of 27

(Each definition 1 Mark)

(1 Mark)

c) Compare Horizontal axis and vertical axis wind machine on the basis of :

c) (i) Power captured for the same tower height. (ii) Noise problem. (iii) Complexity of design and yaw mechanism (iv) Effect of fatigue arising from numerous resonance in structure.

Ans:

(1 Mark each point Total 4 Marks)

Sr.No.	Points	Horizontal axis Wind Machine	vertical axis wind machine
i)	Power captured for the same tower height.	More	Less
ii)	Noise problem	Noise in operation	Quite in operation
iii)	Complexity of design and yaw mechanism	Complicated in design and Yaw mechanism is required.	Simple in design and Yaw mechanism is not required.
iv)	Effect of fatigue arising from numerous resonance in structure.	Less	More

d) Define the terms: (i) Load factor (ii) Diversity factor (iii) Demand factor (iv) Plant capacity factor.

Ans:

i) Load Factor: -

It is the ratio of average demand /load to maximum demand during given

period is known as Load Factor.

OR

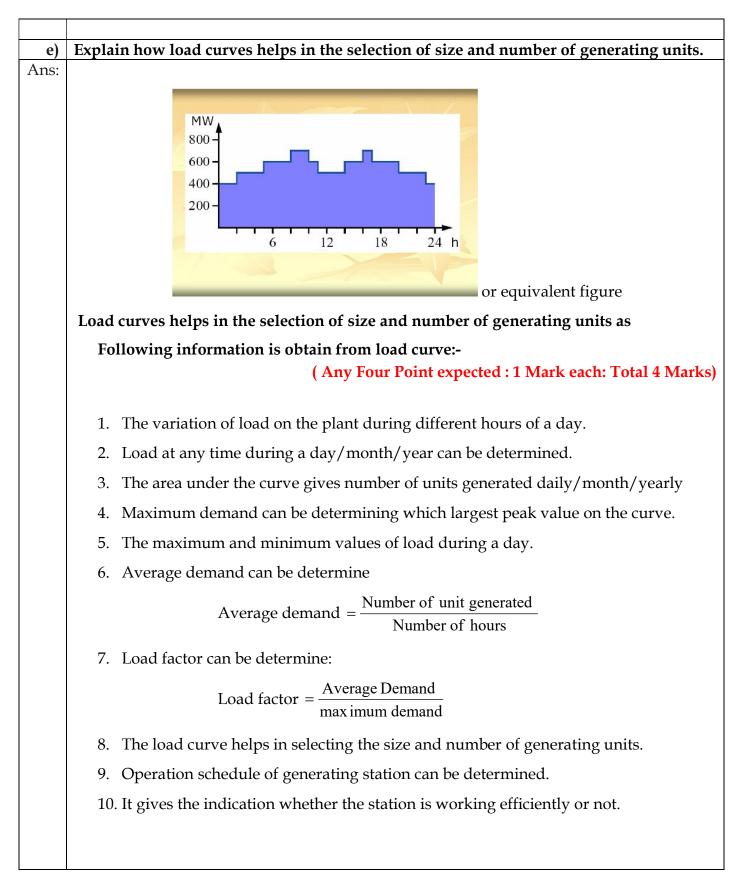
Load Factor = $\frac{\text{Average Demand (load)}}{\text{Maximum demand (load)}}$

OR

Daily Load Factor = $\frac{Number units generated in 1 Day}{Number of hours in a day (24 hours) \times MaximumDemand}$

OR

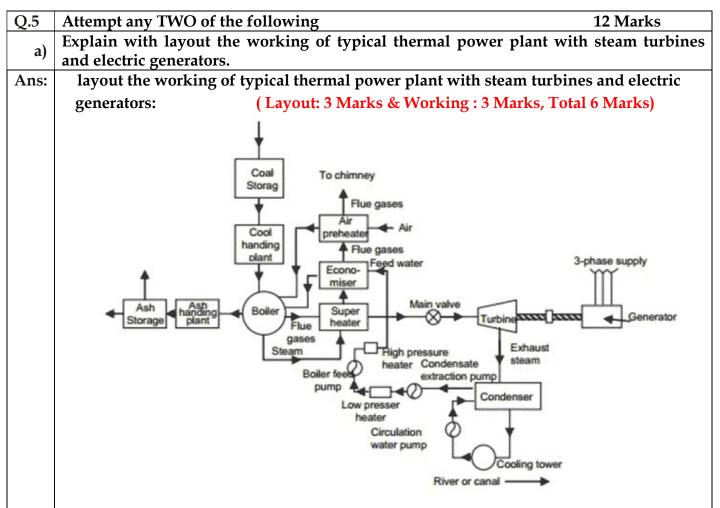
Monthly load Factor = $\frac{Number of units generated (KWH) in month}{Number of hours in a month × Maximum Demand}$



Subject Code: 22327		MMER– 2019 Examinations <u>Model Answer</u>	Page 16 of 27
Yearly le	nad Eactor $=$ —	umber of units generated (KWH) Number of hours in one year (876	
		n of the individual consumers station. OR	<mark>(1 Mark)</mark> s, maximum demand to the
Divers	ity Factor $=$ $\frac{Sum}{m}$	n of individual consumers max im Maximum demand on power s	
iii) Demand fa	ctor:		(1 Mark)
It is the	e ratio of maxim	um demand on the power stati	on to its connected load.
		OR	
Mathema	atical expression	:	
Dem	and Factor $= \frac{M}{M}$	Connected load	
iv) Plant capa	city factor:		(1 Mark)
// -	The net capacity	factor of a power plant is the	ratio of its actual output over
a period	of time, to its p	potential output if it were pos	sible for it to operate at full
nameplat	e capacity indefi	initely.	
		OR	
It	is the ratio of ac	ctual energy produced (generat	ted) to the maximum possible
energy th	at could have be	een produced (generated) durir	ng a given period.
		OR	
	Plant Capacity	Maxium energy that can Average dema	be produced
		OR	cy
Plant capa	acity factor = $\frac{1}{M}$	Actual energy generated Maximum possible energy (KWH) that could h	ave been generated

SUMMER- 2019 Examinations Model Answer

Page 17 of 27



SUMMER-2019 Examinations

Subject Code: 22327

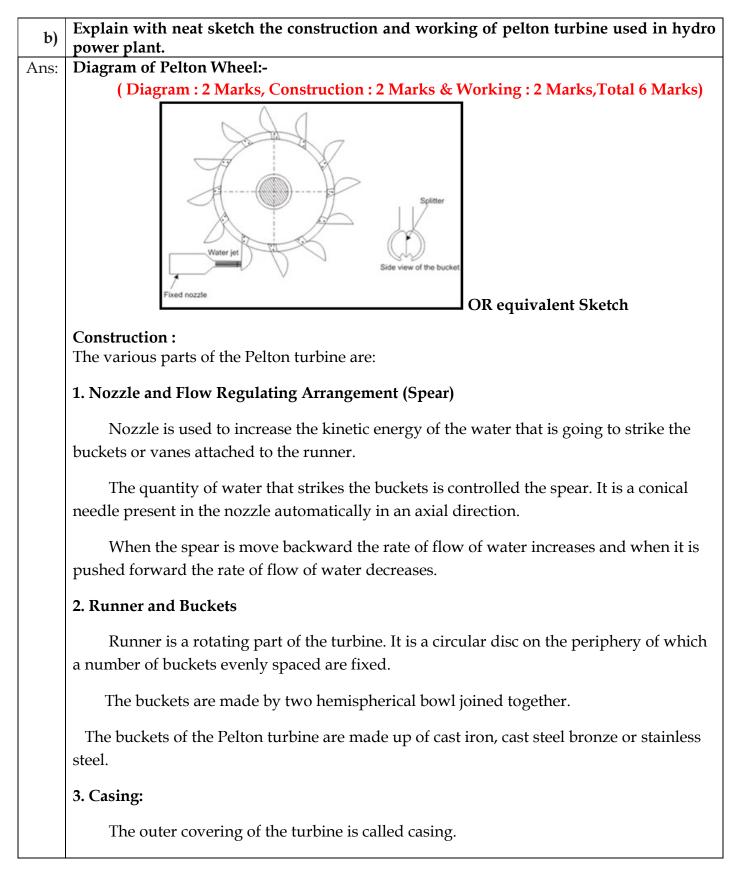
Model Answer

Page 18 of 27

or Equivalent Figure

Working:-

In thermal power plants, the heat energy obtained from combustion of solid fuel (mostly coal) is used to convert water into steam, this steam is at high pressure and temperature. This steam is used to rotate the steam turbine. Shaft of turbine is connected to the generator. The generator converts the mechanical energy of the turbine into electric energy.



SUMMER-2019 Examinations

Subject Code: 22327

Model Answer

Page 19 of 27

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 20 of 27

It prevents the splashing of the water. It protects the runner, runner buckets and other internal parts of the turbine from an external damage. It also acts as a safeguard in the case of any accident occurs. Cast iron or fabricated steel plates are used to make the casing of the Pelton Turbine.

4. Breaking jet:

Subject Code: 22327

In order to stop the runner in the shortest possible time a small nozzle is provided which directs the jet of water at the back of the vanes. This jet of water used to stop the runner of the turbine is called breaking jet.

Working of Pelton wheel:

The water stored at high head is made to flow through the penstock and reaches the nozzle of the Pelton turbine.

The nozzle increases the K.E. of the water and directs the water in the form of jet.

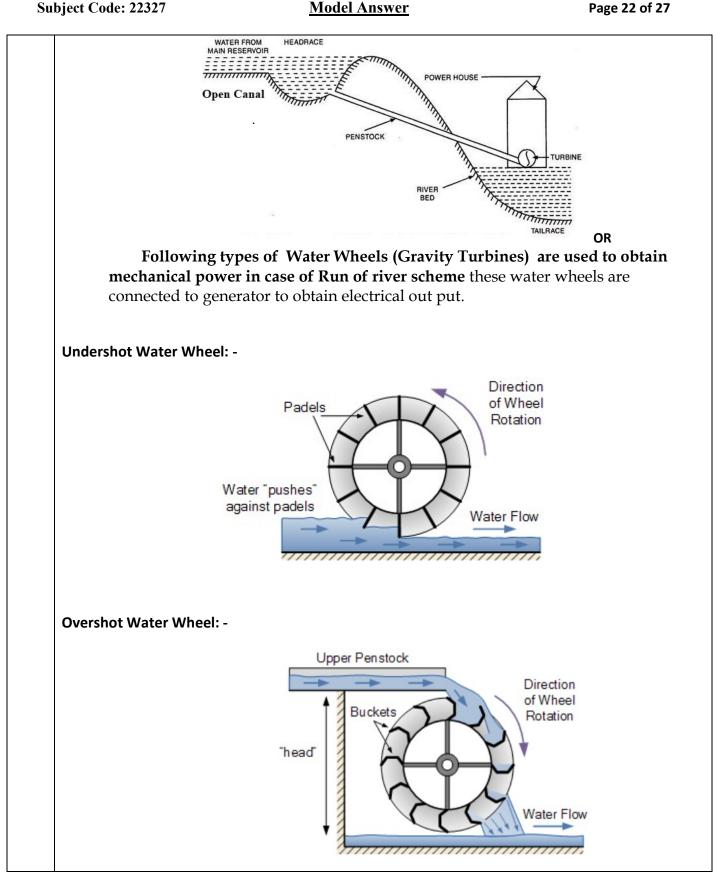
The jet of water from the nozzle strikes the buckets (vanes) of the runner. This made

the runner to rotate at very high speed.

The quantity of water striking the vanes or buckets is controlled by the needle valve present inside the nozzle.

The generator is attached to the shaft of the runner which converts the mechanical energy of the runner into electrical energy.

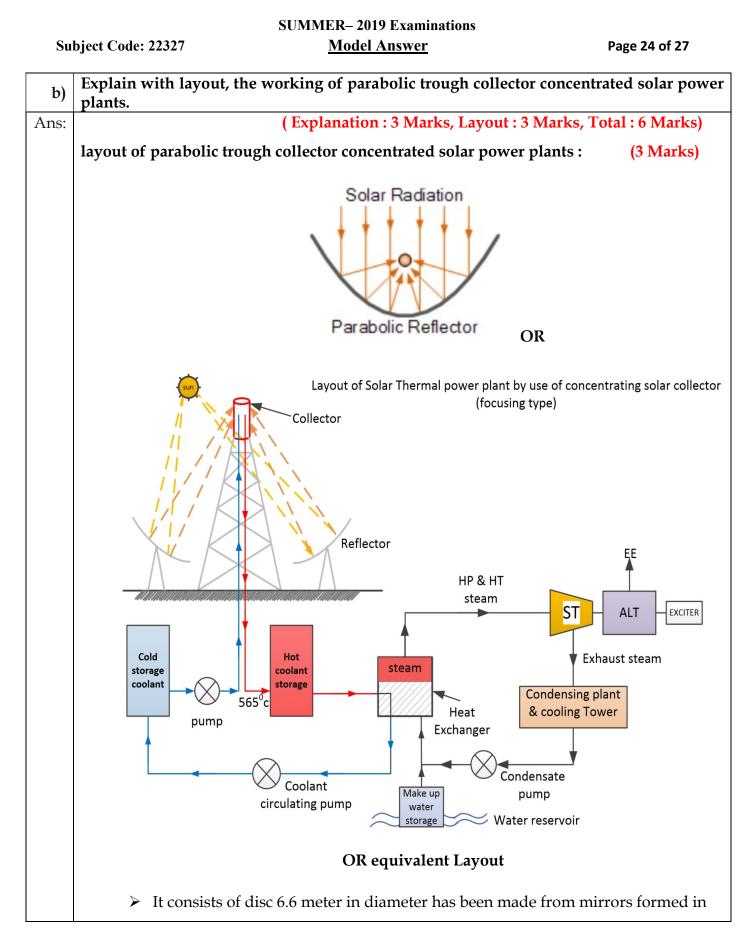
c)	Explain with neat sketch, layout of Bio-chemical based (biogas) power plant.					
ns:	(Explanation : 3 Marks & Sketch Layout : 3 Marks, Total 6 Marks)					
	Explanation:- (3 Marks)					
	In this process biomass fuel is converted to produces methane gas by pyrolysis or					
	fermentation processes.					
	Which can be used to produce heat energy which is used to produce steam at hig					
	pressure and temperature. This steam is used to rotate the steam turbine. Shaft of					
	turbine is connected to the generator. The generator converts the mechanical					
	energy of the turbine into electric energy.					
	-/					



SUMMER-2019 Examinations Subject Code: 22327 **Model Answer** Page 21 of 27 Layout of Bio-chemical based (biogas) power plant:-(3 Marks) Slurry of cattle dung and water Outlet for bio-gas S Mixing tank-Slab cover Slab cover ⊧l+ Gas valve Dome M n Ground Overflo level Bio-gas tank Inlet chamb Spent slurry Dung and water mixture -Outlet chamber Underground digester tank Fixed-dome type bio-gas plant OR equivalent neat sketch layout Attempt any TWO of the following 12 Marks Q.6 Draw the layout of typical micro hydro scheme and describe potential locations of a) micro-hydro power plants in Maharashtra. Note:- Any equivalent layout should be considered Ans: (Layout: 3 Marks, potential locations: 3 Marks, Total: 6 Marks) Layout of typical micro hydro scheme: (3 Marks) Original effective head Control gate Control water level by guide vane STREAM Operating effective head Original water flow Quick discharge Stable flow of water OR

SUMMER-2019 Examinations Model Answer

Page 22 of 27



SUMMER– 2019 Examinations Model Answer

Page 23 of 27

Breast sh		The Breastshot Waterwheel
Potential loc	ations o	birection Penstock Void Voi
Note :- Any		(Any three location are expected 1 Mark each Total 3 Mar) other than following are should be consider
-	Sr.No.	Location name in Maharashtra
-	1	Terwanmedhe
-	2.	Ganagamshet project (Kolhapur)
-	2	Karwa project Nasik
-	3	Shenur project Amravati
	4	Upper wardha project Amravati
	5	Dham Project (Wardha)
	6	Mukne Project (Nasik)
	6 7	Mukne Project (Nasik) Khaner project (Satara)
	6 7 8	Mukne Project (Nasik) Khaner project (Satara) Hetwane project (Raigad)
	6 7 8 9	Mukne Project (Nasik) Khaner project (Satara) Hetwane project (Raigad) Kadwi project (Kolhapur)
	6 7 8 9 10	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)
	6 7 8 9 10 11	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)
	6 7 8 9 10 11 12	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)
	6 7 8 9 10 11 12 13	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)Patgaon project
	6 7 8 9 10 11 12 13 14	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)Patgaon projectDom
	6 7 8 9 10 11 12 13 14 15	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)Patgaon projectDomVaitarna D.T
	6 7 8 9 10 11 12 13 14 15 16	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)Patgaon projectDomVaitarna D.TRadhanagri
	6 7 8 9 10 11 12 13 14 15 16 17	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)Patgaon projectDomVaitarna D.TRadhanagriManikodh
	6 7 8 9 10 11 12 13 14 15 16	Mukne Project (Nasik)Khaner project (Satara)Hetwane project (Raigad)Kadwi project (Kolhapur)Wan project (Akola)Sasari project (Kolhapur)Kumbhoi project (Kolhapur)Patgaon projectDomVaitarna D.TRadhanagri

SUMMER- 2019 Examinations Model Answer

Page 25 of 27

(3 Marks)

to the shape parabola called as concentrator.

- Surface absorber (Receiver) which is well insulated which is located at focal point
 - The concentrator captures and reflect solar radiation towards receiver /collector (absorber)
 - > The receiver absorbs the concentrated sunlight rays and gets heated.
- The disc can be turn automatically up-down and left-right, so that sun is always kept in a line. Thus the sun can be fully tracked.

OR

Working:

Subject Code: 22327

- > The concentrator captures and reflect solar radiation towards collector (absorber)
- > The receiver absorbs the concentrated sunlight rays and gets heated.
- > The secondary fuel (coolant or working fluid) is passed through collector.
- > Transferring its heat energy to a working fluid.
- > This coolant gets heated to a very high temperature.
- This hot coolant is stored in transport-storage system (a portion of the thermal energy is stored for later use). Thus solar energy can be used even when sun rays are not available
- Then hot coolant is passed through heat exchanger (steam generator) where steam at high temperature and high pressure is generated.
- > This secondary fuel (coolant or working fluid) is re-circulated again and again.
- > This steam at high temperature and high pressure is used to run the steam turbine.
- Steam turbine is coupled with alternator which converts mechanical power to electrical energy
- Exhaust steam is condensate in condenser.

SUMMER-2019 Examinations Subject Code: 22327 Model Answer Page 26 of 27 A load on a power plant on a typical day is as under:-Time 12-5 AM 5-9 AM 9-6 PM 6-10 PM 10 PM-12 AM c) Load in MW 20 40 80 100 20 Plot the chronological load curve and load duration curve. Find the load factor of the plant and energy supplied by the plant in 24 hours. **Solutions:** Ans: i) Chronological load curve: ----- (1 Mark) Question Number 6 C) Chronological Load Curve Load scale X axis - 1 cm = 2 hrs (MW) Yaxis - 1 cm = 10 MW 110 100 90 80 70 60 50 40 30 20 20MW 40MW SOMW 100 mW 20 10 2 4 6 8 10 12 2 4 6 8 10 12 Time in hrs or equivalent graph ii) load duration curve: ----- (1 Mark) Load Duration Curve Scale:-Lood (MW) raxis, 1cm=1hr Yanis, Icm=10 MW 110 100 MW 100 90 80 MW 80 70 60 50 40 MW 40 30 20 MW load 20 FOF 4 hrs 80 MW load for 9 hrs for 4 hrs 10 7 hrs 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hrs) 6

Code: 22327			Page 27 of 27
	or e	quivalent graph	
i) It is clear fro	om the load curve t	hat maximum dem	and on the power station is
100 MW and	d occurs during the	period 6-10 PM	
Maximu	100 M M M M M M M M M M M M M M M M M M 	W	(1/2 Mark)
ii) Energy supp	lied by the plant in	24 hours (Units g	enerated /day) =
=Arec	u (in KWh) under the	load curve	
$=10^{3}$ ($20 \times 5 + 40 \times 4 + 80 \times 9$	$+100 \times 4 + 20 \times 2)$	
$=10^{3}$ (100 + 160 + 720 + 400	0 + 40) kWh	
=1420	$\times 10^3 KWh $ OR = 1	420 <i>MWh</i>	(1 Mark)
iii)Average Loa	d =		(1/2 Mark)
$=\frac{Unin}{2}$	ts generated per day 24 hours	$=\frac{1420\times10^{3}}{24}=59.16$	$566 \times 10^3 \ KW$
iv) Load Factor	=		
	= Average load Maximum demand	$-=\frac{59.1666\times10^3}{100\times10^3}$	(1Mark)
		= 0.591666	(1 Mark)
		OR	
		= 59.16 %	
	i) It is clear from 100 MW and Maximu ii) Energy suppl $= Area= 103 (= 103 (= 1420)iii) Average Load= \frac{Unin}{2}iv) Load Factor$	Code: 22327Modelor ei) It is clear from the load curve t100 MW and occurs during theMaximum Demand: 100 Mii) Energy supplied by the plant in= Area (in KWh) under the= 10³ (20×5+40×4+80×9)= 10³ (100+160+720+40)= 10³ (100+160+720+40)= 1420×10³ KWh OR = 1iii)Average Load == Units generated per day 24 hoursiv) Load Factor =	i) It is clear from the load curve that maximum dem 100 MW and occurs during the period 6-10 PM Maximum Demand: 100 MW

-----END------END-------

22327

11	1920)			
3	Ho	ours /	70	Marks	Seat No.
	Instru	ctions –	(1)	All Question	s are Compulsory.
			(2)	Illustrate you necessary.	ar answers with neat sketches wherever
			(3)	Figures to th	ne right indicate full marks.
			(4)	Assume suita	able data, if necessary.
			(5)	Use of Non- Calculator is	programmable Electronic Pocket permissible.
			(6)		e, Pager and any other Electronic ion devices are not permissible in Hall.
					Marks
1.		Attempt	any any	<u>FIVE</u> of the	e following: 10
	a)	List any installed			ver Station in Maharashtra with their
	b)	State an	y two	o applications	of solar energy.
	c)	List out	majo	or wind farms	s in India.
	d)	Define S	State	grid and Nati	ional grid.

- e) Name the main parts of solar power plant.
- f) Classify hydro power plant on the basis of availability of water head.
- g) List any two large hydro power plants in Maharashtra with their capacity.

2. Attempt any <u>THREE</u> of the following: a) Describe any four safe practices for Hydro Power Plants. b) Draw a neat layout of typical Thermal power station and label it. c) State the salient features of constant speed electric generator and variable speed electric generator. d) List any four causes of faults on grid system.

3. Attempt any <u>THREE</u> of the following:

- a) Draw a block diagram of gas turbine power plant and lable each block.
- b) Explain with sketch the layout and working of parabolic through concentrated Solar Power plant.
- c) State any four factors for selection of hydro power plant.
- d) Describe with sketch the layout and working of Geared wind power plant.

4. Attempt any <u>THREE</u> of the following:

- a) Explain the purpose of shielding and reflector in a nuclear reactor.
- b) Explain with layout diagram; the construction and working of solar photo voltaic (PV) power plant.
- c) Describe the layout and working of the horizontal and vertical axis small wind turbines.
- d) Define :
 - (i) Max Demand
 - (ii) Average Demand
 - (iii) Plant capacity factor
 - (iv) Plant use factor
- e) Compare base load and peak load power plants.

12

5. Attempt any TWO of the following:

- a) State the types of radioactive wastes generated in a nuclear power station. Explain the methods employed for their disposal.
- b) State the functions of the following parts of hydroelectric power station:
 - (i) Reservoir
 - (ii) Tailrace
 - (iii) Spillway
 - (iv) Surgetank
 - (v) Forebay
 - (vi) Turbine
- c) Explain with sketch; the layout of a thermo chemical based (municipal waste) power plant.

6. Attempt any <u>TWO</u> of the following:

a) Explain with sketches the construction and working of the Pelton turbine used for high head power plant.

- b) Describe the features of solid, liquid and gas biomasses as fuel for biomass power plant.
- c) The peak load on a power station is 30 MW. The loads having maximum demands of 25 MW, 10 MW, 5 MW and 7 MW are connected to the power station. Capacity of the power station is 40 MW and annual load factor is 50%. Find:
 - (i) Average load on power station
 - (ii) Energy supplied per year
 - (iii) Demand factor
 - (iv) Diversity factor

12

12

WINTER- 2019 Examinations Model Answer

Page 1 of 28

Subject Code: 22327

- Important suggestions to examiners:
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

.1	Attempt any FIVE of the following10 Marks							
a)	List any two Thermal Power Station in Maharashtra with their installed capacity.							
Ans:	(Any Tw	(Any Two power plant name expected or any equivalent: 1 Mark each, Total 2 Mark)						
		Sr.No.	Name of Thermal Power Plant	Plant Capacity				
		1	Koradi	1100 MW				
		2	Nashik	910 MW				
		3	Chandrapur	2340 MW				
		4	Parali	1130 MW				
		5	Bhusawal	920 MW				
		6	Paras	500 MW				
		7	Khaparkheda	1340 MW				
		8	TATA (Trombay)	1400 MW				
		9	Dhahanu (Thane)	500 MW				
		10	Wardha	135 MW				
		11	Amravati	2700 MW				
		12	Jindal (Ratnagiri)	1200 MW				

Su	bject Code: 223	WINTER– 2019 Examinations 27 <u>Model Answer</u> Pa	ge 2 of 28			
b)		o applications of solar energy.				
Ans:		y can be used directly or indirectly for following applications	or any			
	equivalent: (Any Two applications expected: 1 Mark each, Total					
	1. For street lighting.					
	2.	For road Traffic, signaling system.				
	3.	For railway Traffic signaling system.				
	4.	For lifting water with the help of solar pumps.				
	5.	In satellite solar energy is used.				
	6.	In weather monitoring System.				
	7.	Lighting in remote place area.(Off grid)				
	8.	Solar cells are used in watches and calculator.				
	9. Solar mobile charger.					
	10.	For radio and Television set.				
	11. Solar blinker and road divider.					
	12.	Solar mini cars are under development.				
	13.	Solar cooker.				
	14.	Solar water heater.				
	15.	Solar dryer for crops.				
	16.	Solar furnace				
	17.	Solar distillation				
	18.	Space heating of building				
c)	List out major wind farms in India.					
Ans:	Major wind	farms in India or any equivalent:				
		(Any Two wind farms expected: 1 Mark each, T	otal 2 Marks)			
	S.Nc	Major wind farms in India				
	1	Dhalgaon Wind farm of Sangli, Maharashtra,				

WINTER-2019 Examinations Model Answer

Su	bject Code: 22327	Model Answer	Page 3 of 28
	2	Vankusawade Wind Park in Satara, Maharashtra,	
	3	Vaspet Wind farm of Maharashtra,	
	4	Brahmanvel Wind Farm Dhule, Maharashtra	
	5	Tuppadahalli Wind Farm, Chitradurga , Karnataka	
	6	Beluguppa Wind Park in Andhra Pradesh.	
	7	Anantapur Wind Park in Andhra Pradesh.	
	8	Muppandal Wind farm Kanyakumari, Tamil Nadu	
	9	Jaisalmer Wind Park, Rajasthan	
	10	Damanjodi Wind Farm, Odisha	
d)	U U	d and National grid.	
Ans:	i) State Grid Sys		(1 Marks)
		the major generating stations in state are interconnected to ea	ch other through
		on line, it forms a state grid system	
	ii) National Grid	·	(1 Marks)
		grids are interconnected to each other through transmission li	ne; it forms a national
	grid syster	n	
e)	Name the main	parts of solar power plant.	
Ans:	Main parts of s	olar power plant:-	(2 Marks)
	1. So	lar panel (PV cell panel)	
	2. Ch	narge controller	
	3. Sto	orage battery	
	4. In	verter	
	5. Ste	ep up transformer	
		OR Student may write	

	ge 4 of 28 (<mark>2 Marks)</mark> (se)									
 Concentrator Receiver Transport-storage (a portion of the thermal energy is stored for later u Steam generator (Heat exchanger) Condenser Steam turbine 	``									
 Receiver Transport-storage (a portion of the thermal energy is stored for later u Steam generator (Heat exchanger) Condenser Steam turbine 	se)									
 Transport-storage (a portion of the thermal energy is stored for later u Steam generator (Heat exchanger) Condenser Steam turbine 	.se)									
4. Steam generator (Heat exchanger)5. Condenser6. Steam turbine	ise)									
 Condenser Steam turbine 										
6. Steam turbine										
7. Alternator										
f) Classify hydro power plant on the basis of availability of water head.										
Ans: Classification the hydro-electric plants According to availability of Head of	f Water:									
(2 Mark) 1. Very high head power plant 2. High head power plant										
					3. Medium head power plant4. Low head power plant					
					1. High head power plant					
										2. Medium head power plant
3. Low head power plant										
g) List any two large hydro power plants in Maharashtra with their capacity.	List any two large hydro power plants in Maharashtra with their capacity.									
Ans: Hydro-electric power stations in Maharashtra or equivalent:-										
(Any Two plants expected : 1 Mark each, Total : 2 Ma	arks)									
List of large hydro power plants in Maharashtra										
S.No Location Capacity										
1 Koyana 1960MW										
2 Ghatghar Dam 250MW										
3 Bhira (TATA) 150 MW	_									
4 Mulshi Dam 150MW										
Student may write following location										
5 Bhira Tail Race 80 MW										

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

WINTER- 2019 Examinations Model Answer

Page 5 of 28

	~j					
	6	Bhivapuri (TATA)	72 MW			
	7	Khopoli (TATA)	72 MW			
	8	Tillari	60 MW			
	9	Pench project	53 MW			
	10	Bhandara	34 MW			
	11	Dudhgaon	24 MW			
	12	Chadholi(Warana)	16MW			
	13	Jayakwadi	12 MW			
	14	Paithon/Ujjani	12 MW			
	15	Veer	9 MW			
	16	Bhatghar	16 MW			
	17	Vaitarana Dam	1.5 MW			
	18	Eldary	22.5 MW			
	19	Radhanagri	4.8 MW			
	20	Paitan	12 MW			
	21	Pawan	10 MW			
	22	Panshet	8 MW			
	23	Varasgoan	8 MW			
	24	Kanher	4 MW			
	25	Bhatsa	15 MW			
	26	Dhom	2 MW			
	27	Manikdoh	6 MW			
	28	Yeoteshwar	0.075 MW			
	29	Dimbhe	5 MW			
Q. 2	Attempt any	THREE of the following		12 Marks		
a)	Describe any four safe practices for Hydro Power Plants.					
Ans:	Following are the safe practices:-					
	(Any four point expected: 1 Mark each, Total : 4 Marks)					
	 The Personal Protective Equipment (PPE) / protective devices made available for individual or collective use of the workers likely to be affected by the hazards of the workplace or process. Not to allow any worker to work in an unsafe condition, nor with unsafe equipment 					

WINTER– 2019 Examinations Model Answer

Page 6 of 28

- 3. Sufficient number of Supervisors shall be appointed for adequate and constant supervision at all times and in all workplaces
 - 4. All workers are protected from the hazards, arising out of their work or due to the work carried out by others, in the vicinity
 - 5. Safety training shall be provided to all employs Appoint a Safety Officers with the qualifications and experience
 - 6. Safety posters, slogan competition, special meetings and talks shall be organized.
 - 7. Emergency action plan should be ready to deal with fire and explosion
 - 8. Power plant should be protected against lightning stroke i.e. use appropriate type of lightning arrestor.
 - 9. Barricades, warning sign, safety posters should be provided to hazards and important locations
 - 10. Station should have at least two independent ways to exit. If one route becomes inaccessible, an alternative emergency escape route should always be available. Adequate lighting is essential for emergency escapes.
 - 11. During flood there should be provision of automatically stop the hydro plant.
 - 12. Plant should be inspected from OSHA and NFPA organization

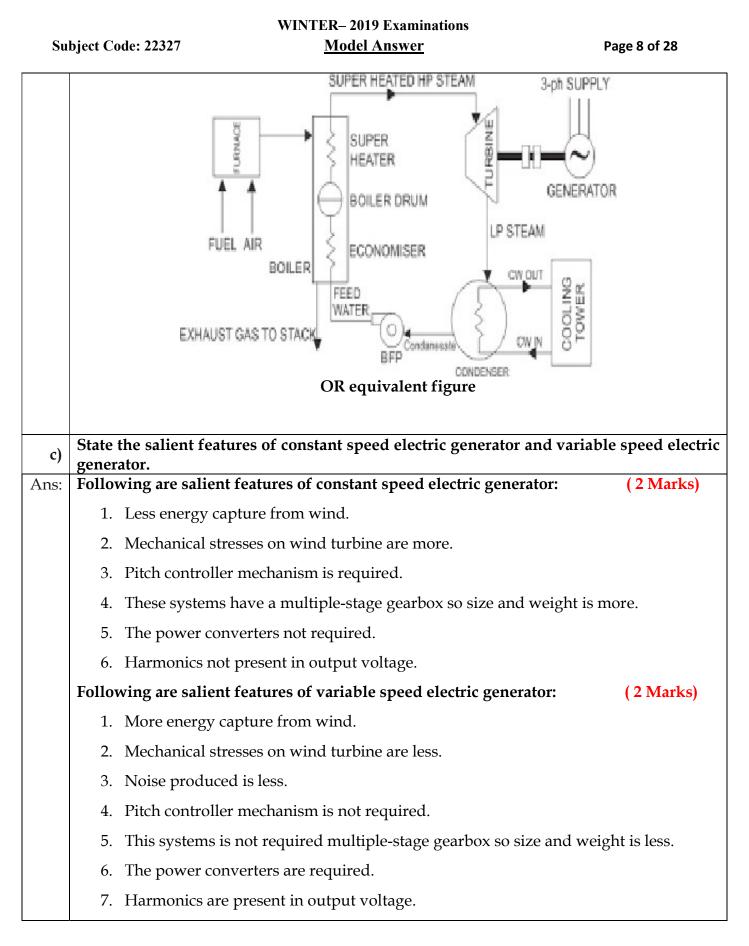
OR

Following are the different protection provided to HPP for safety:-

1. Fore bay:-

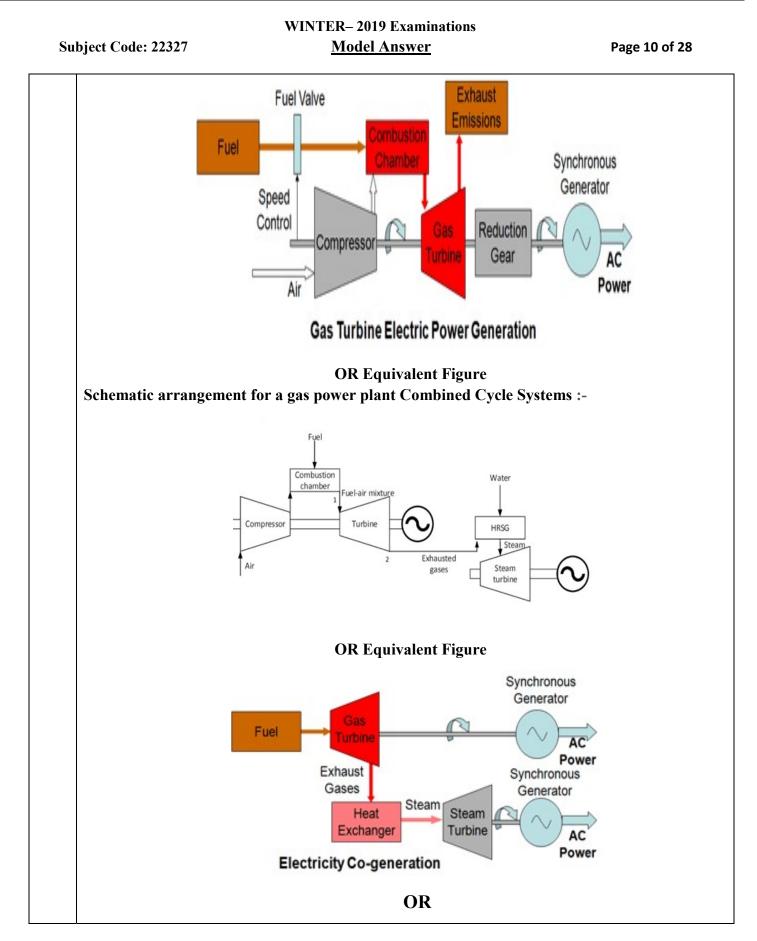
It serves the following function is-

- It store rejected water immediately when load on turbine reduces so it avoid water <u>hammer effect</u> in penstock and protect the penstock.
- It avoids cavity effect in penstock when load on turbine increases (Because it immediately supplies the water).
- \succ It acts as buffer storage of water during flooding which increases the safety of dam.


2. Trash rack (Screen/ Booms):-

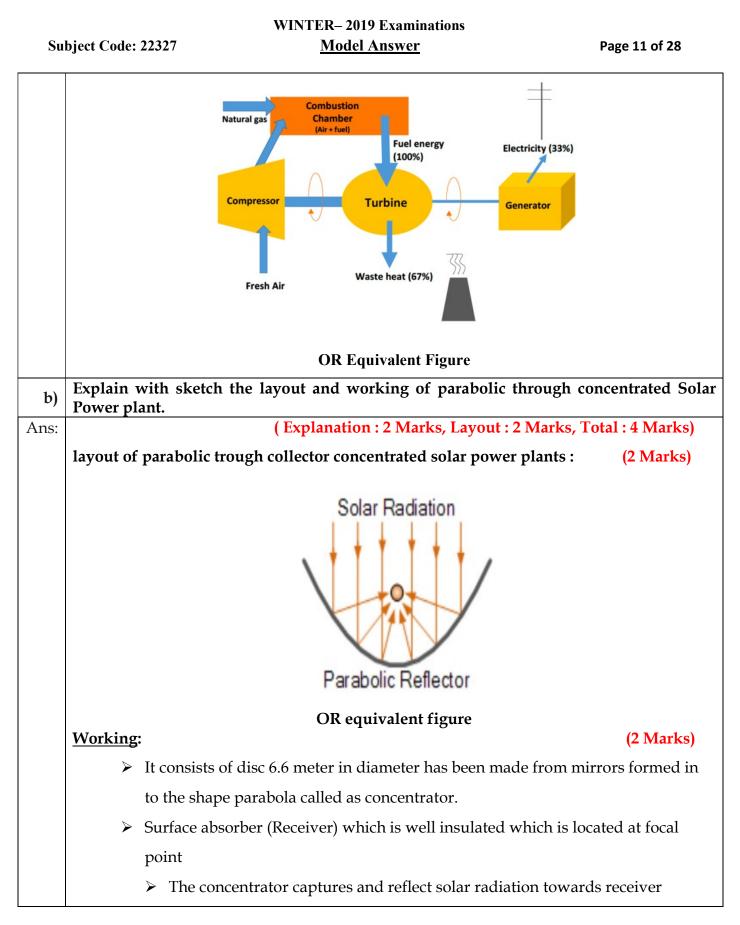
- It avoids entry of debris (solid particles, large fish, and ice) going towards the turbine.
- > It avoids choke up of penstock and damage to turbine.

WINTER-2019 Examinations **Model Answer** Subject Code: 22327 Page 7 of 28 3. Spillways: - \triangleright It discharge excess water from reservoir when the water exceeds the storage capacity of reservoir. > It avoids damage to dam due to excess pressure of water. \succ It acts as a safety value to the dam. 4. Protection provided to penstock: Surge Tank or fore bay Automatic butterfly valve \blacktriangleright Air valve 5. Surge tank:-It protects penstock from water hammer effect when load on turbine reduces \geq (Because it immediately stores the rejected water). > It avoids cavity effect in penstock when load on turbine increases (Because it immediately supplies the water). b) Draw a neat layout of typical Thermal power station and label it. Neat layout of typical Thermal power station : (4 Marks) Coal To chimney Storag Flue gases Cool eheate handing Flue gases plant 3-phase supply Feed water Economiser ♣ Ast Boiler Super Ans: Generator 11111 11111 Turbin Storage heater Flue gases Exhaust Steam **High pressure** steam heater Condensate Boiler fe extraction pump pump Condenser Low presser heater Circulation water pump Cooling tower River or canal **OR** equivalent figure

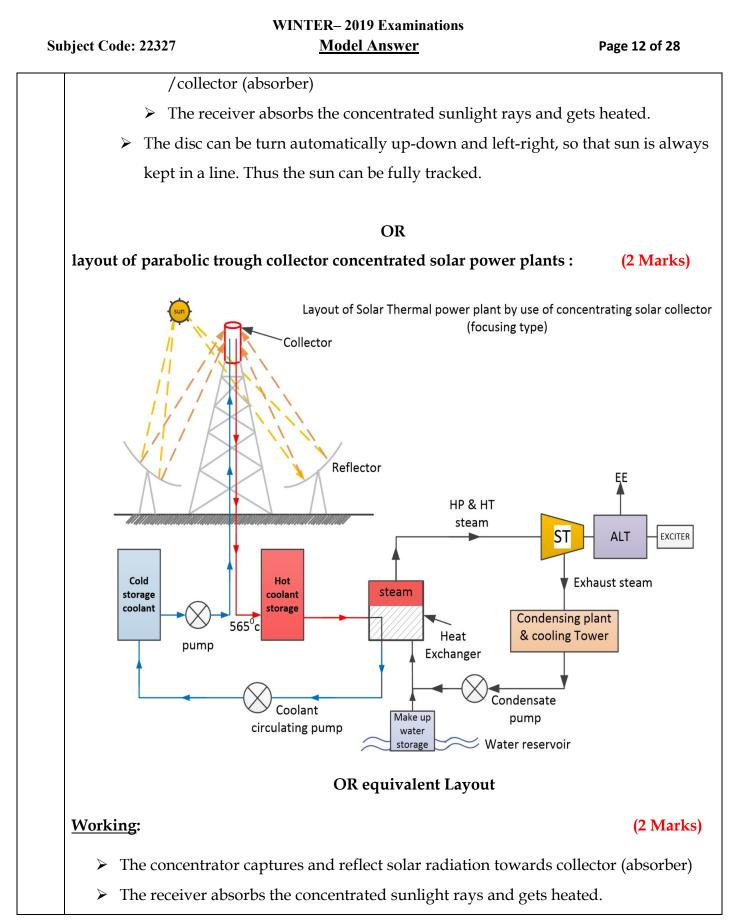


WINTER-2019 Examinations **Model Answer**

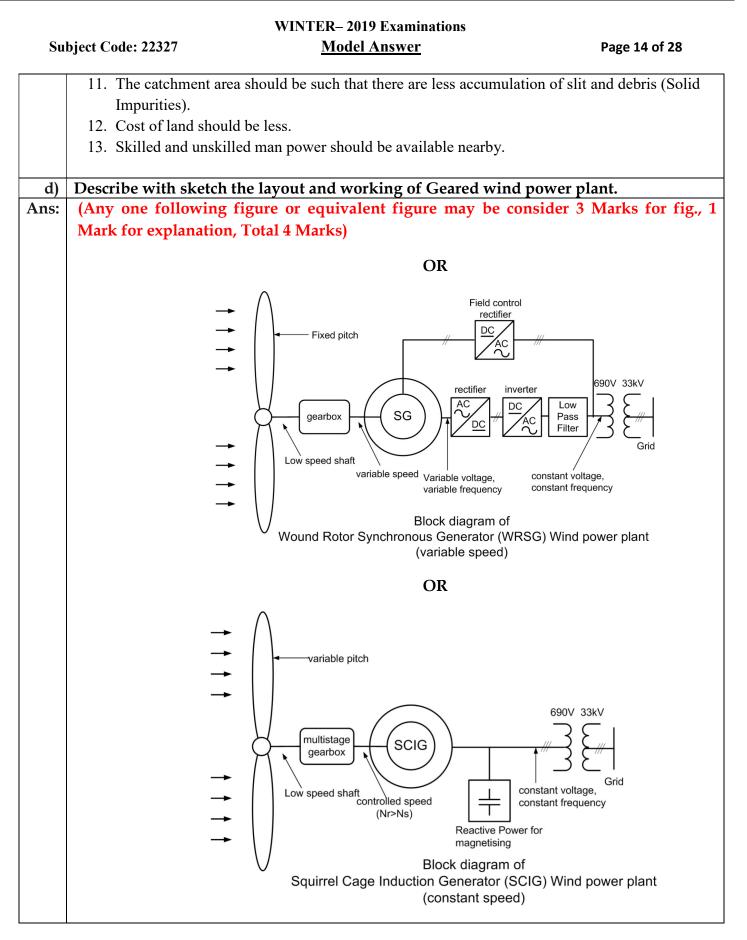
Su	bject Code: 22327	Model Answer	Page 9 of 28				
d)	d) List any four causes of faults on grid system.						
Ans:	Following are the causes of faults on grid system or equivalent:						
	(Any FOUR Point expected : 1 Mark each point, Total 4 Marks)						
	1. Major imbalance between generation and consumption.						
	2. Low frequency, due to some faults the frequency mismatches then, there is						
	possibility of failure of power grid.						
	3. Due to breaking of conductor or due to short circuit between two conductors fault						
	occurs which leads to failure of grid.						
	4. Power surges causes rapid overheating tends to lead failure of grid.						
	5. Minor fault in high voltage equipment's if not attended over a period of time results						
	in a total breakdown of equipment suddenly causing grid failure.						
	6. Illegal utilization of electricity (theft of energy) is also a major reason for power grid						
	failure.						
	7. Ageing of power equipment's have higher failure rates increases the risk of						
	frequent breakdown.						
	8. Due to failure of grid connected one of the generator units suddenly.						
	Then load is shifted to other generator causes cascade tripping due to over						
	loading.						
	9. Due to ineffective power delivery planning, co-ordination, supervision and control						
	over generation system causes failure of grid (Due to ineffective work of LDC).						
Q.3	Attempt any THREE	0	12 Marks				
a)	Draw a block diagram of gas turbine power plant and label each block.						
Ans:	Block diagram of gas	turbine power plant:-	(4 Marks)				
	Regenerator						
	- 200						
	Fuel Combustion gas						
	Alternator						
	Compressor Gas Turbine \approx M						
	starting motor						
	Filter Gas turbine power plant						
	Air [†] intake		OR Equivalent Figure				

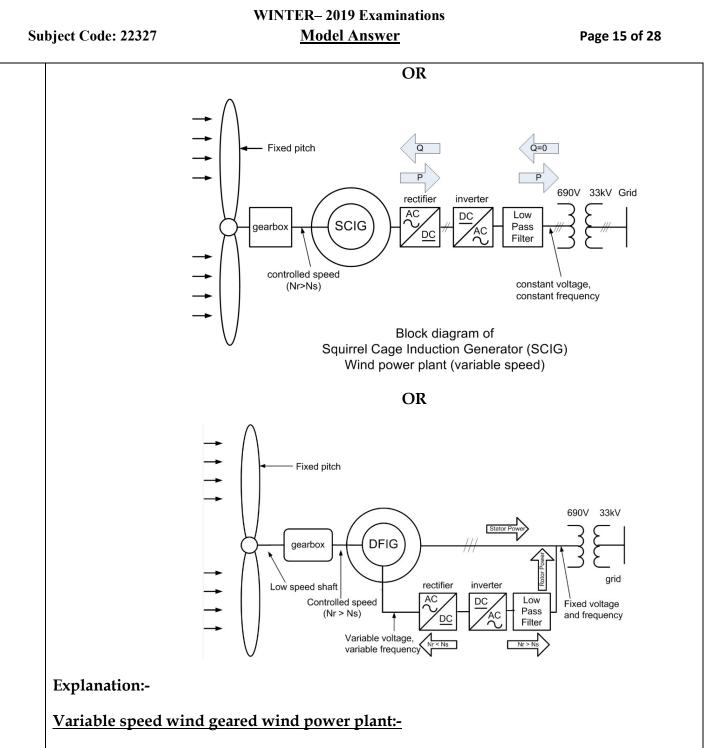


MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)



MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

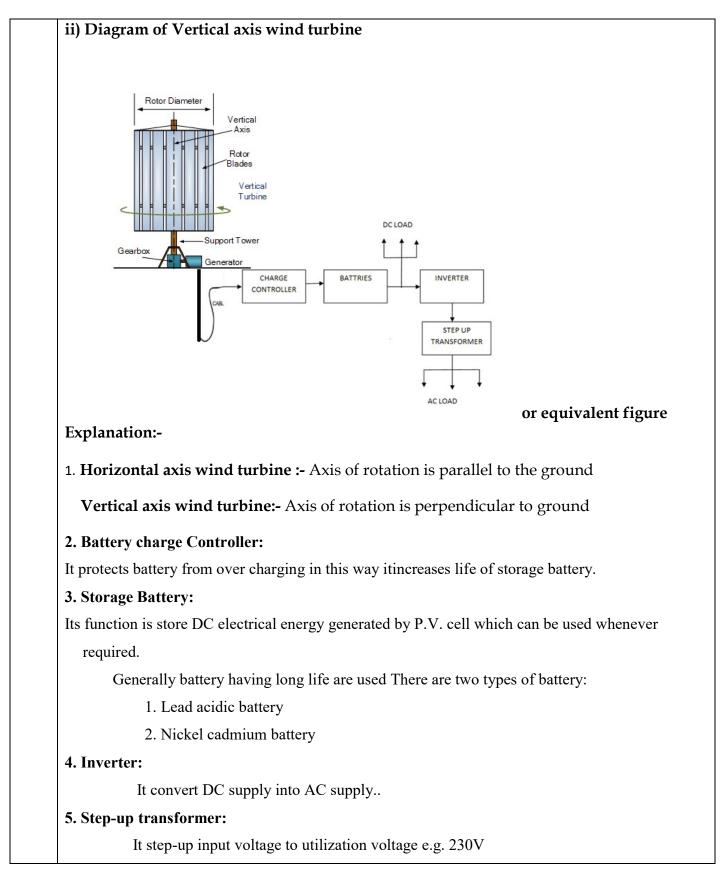




Sub	ject C	ode: 22327 WINTER– 2019 Examinations	Page 13 of 28
	\triangleright	The secondary fuel (coolant or working fluid) is passed through	n collector.
	\triangleright	Transferring its heat energy to a working fluid.	
	۶	This coolant gets heated to a very high temperature.	
	۶	This hot coolant is stored in transport-storage system (a portion	of the thermal
		energy is stored for later use). Thus solar energy can be used even not available	en when sun rays are
	\triangleright	Then hot coolant is passed through heat exchanger (steam gene	rator) where steam
		at high temperature and high pressure is generated.	
	\triangleright	This secondary fuel (coolant or working fluid) is re-circulated a	gain and again.
	≻	This steam at high temperature and high pressure is used to ru	n the steam turbine.
		Steam turbine is coupled with alternator which converts mecha	
		electrical energy	-
,		any four factors for selection of hydro power plant. ving Factors to be kept while site selecting for Hydro power plant: (Any FOUR Point Expected : 1 Mark each Poin	nt, Total 4 Marks)
	1.	It should be located where high rain fall occurs.	
	2.	A large catchments area must be available to store water.	
	3.	It should be located as far as possible in hilly area to reduce construction water reservoir.	on cost of dam and
	4.	Stored water should have a reasonable head (Potential Energy).	
	5.	There should be easy access towards the site.	
	6.	Land should have high bearing capacity to reduce the construction cost foundation of machinery.	of dam and for better
	7.	Power plant should be located as far as possible near load center to reduce cost and losses in it.	uce transmission line
	8.	During the construction of dam, it should be possible to divert the stream	m of river.
	9.	The Area should be free from earthquake and natural hazards.	
	10.	It is necessary to see that water is of good quality (i.e.no chemical important polluted water may cause corrosion.	urities) because

Because the actual wind speeds are variable, the generator cannot generate electrical power with fixed voltage and frequency magnitude. As a result, they should be connected to the power grid through AC-DC-AC conversion by power converters. That is, the generated AC power (with variable frequency and magnitude) is first rectified into fixed DC and then converted back into AC power (with fixed frequency and magnitude).

WINTER-2019 Examinations Subject Code: 22327 **Model Answer** Page 16 of 28 Constant speed wind geared wind power plant:-A gearbox is typically used in a wind turbine to increase rotational speed from a low-speed rotor to a higher speed electrical generator. A common ratio is about 90:1, with a rate 16.7 rpm input from the rotor to 1,500 rpm output for the generator. Q.4 Attempt any THREE of the following 12 Marks Explain the purpose of shielding and reflector in a nuclear reactor. a) **Purpose of shielding in Nuclear Power Plant:** (2 Marks) Ans: Shielding is provided to absorb alpha, beta particles and gama rays which are produced during nuclear chain reaction (fission process) The function of shielding is to protect environment, humans and animals from the harmful radioactive radiation pollution before they are emitted to atmosphere. Purpose of reflector in a nuclear reactor: (2 Marks) > The function of reflector is to reflect back the neutrons which are leaving from the core. Explain with layout diagram; the construction and working of solar photo voltaic (PV) b) power plant. Diagram of solar photovoltaic power plant : Ans: (Layout : 2 Marks & working : 2 Marks, Total : 4 Marks) SUN RAYS DC LOAD PANAL SUPPORTING STAND BATTRIES CHARGE INVERTER CONTROLLER SOUTH FACING SOLAR PV PANEL [12V,24V,36V] STEP UP TRANSFORMER AC LOAD **OR Equivalent Figure** Working:-1. Photovoltaic cell panel: Its function is to convert sunrays directly into DC electricity.


WINTER-2019 Examinations Subject Code: 22327 **Model Answer** Page 17 of 28 2.Battery charge Controller: It protects battery from over charging and it prevents battery from over discharging. In this way it increases life of storage battery. (OR a charge controller is needed to ensure the battery is neither over nor under-charged) **3.Storage Battery:** Its function is store DC electrical energy generated by P.V. cell which can be used whenever required. 4.Inverter: It converts DC supply into AC supply. 5. Step-up transformer: It step-up input voltage to utilization voltage e.g. 230V Describe the layout and working of the horizontal and vertical axis small wind **c**) turbines. (Following figure or equivalent figure may be consider 3 Marks for fig., 1 Mark for Ans: explanation, Total 4 Marks) i) Diagram of Horizontal axis wind turbine Rotor Blade Gearbox Rotor Diameter Generator Ŧ Wind -orizontal Direction Axis DC LOAD PANAL SUPPORTING Horizontal Turbine CHARGE BATTRIES INVERTER CONTROLLER STEP UP TRANSFORMER ACLOAD or equivalent figure

Subject Code: 22327

WINTER– 2019 Examinations Model Answer

Page 18 of 28

Su	WINTER- 2019 Examinationsbject Code: 22327Model AnswerPage 19 of 28				
d)	d) Define : (i) Max Demand (ii) Average Demand (iii) Plant capacity factor (iv) Plant use factor				
Ans:	(Each definition 1 mark ,Total 4 Marks)				
	i) Maximum Demand: (1 Mark)				
	It is the maximum load which a consumer uses at a particular time period out of his total				
	connected load.				
	ii) Average Demand :- (1 Mark)				
	Daily Average Demand = $\frac{\text{Number of units generated (KWH) in one day}}{\text{Number of hours in a day (24 hours)}}$				
	OR				
	Monthly Average Demand = $\frac{Number of units generated (KWH) in month}{Number of hours in a month}$				
	OR				
	Number of units generated (KWH) in one Year				
	Yearly Average Demand $=\frac{14 \text{ and of of units generated (RVVII) in one real}}{\text{Number of hours in one year}}$				
	iii) Plant capacity factor: (1 Mark)				
	"The net capacity factor of a power plant is the ratio of its actual output over a period				
	of time, to its potential output if it were possible for it to operate at full nameplate capacity				
	indefinitely.				
	OR				
	It is the ratio of actual energy produced (generated) to the maximum possible energy				
	that could have been produced (generated) during a given period.				
	OR				
	Plant Capacity Factor = $\frac{\text{Energy that is produced}}{\text{Maxium energy that can be produced}}$				
	Plant Capacity Factor = $\frac{Average \ demand}{Plant \ Capacity}$				
	OR				

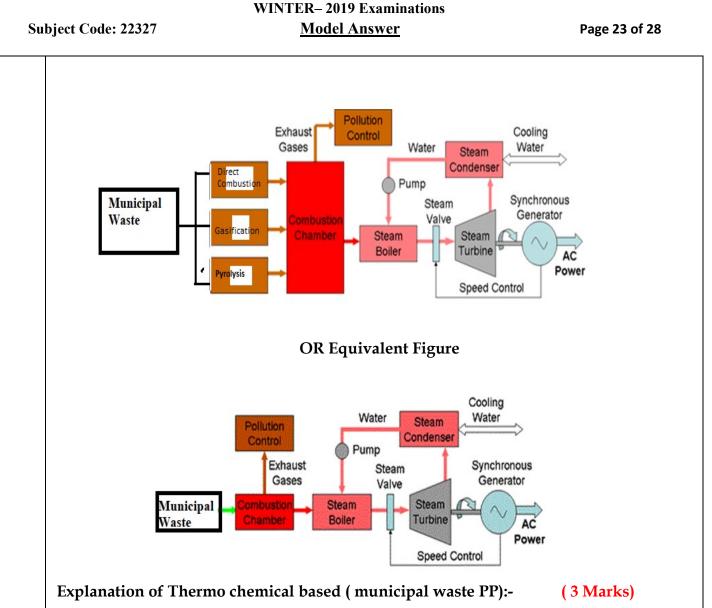
iv)	Plant	ant capacity factor use Factor:- The definition maximum possible	Maximum possible energy (KWH) that		
iv)		The definition	such that the ratio becomes the an	(1 Mark)	
			such that the ratio becomes the an		
		maximum possible	seen may my rand overines me an	nount of energy used divided by t	
		maximum possiole	to be used		
		T 1			
		It is the	ratio of number of unit (kWh)	generated to the product of pl	
		capacity and the nu	mber of hours for which plant was	in operation.	
			OR		
1		. 1	Station output i	n kWh	
		i.e plar	nt use factor = $\frac{Station output i}{Plant capacity \times ho}$	ours of use	
e) Co	mnare	hase load and n	eak load nower plants		
<u> </u>	Compare base load and peak load power plants. (Any Four Point expected : 1 Mark each point, Total 4 Marks)				
5.	(Any rour rount expected . 1 Mark each point, rotar 4 Marks)				
S	Sr.No.	Points	Base load plant	Peak load plant	
	1	Definition	The power plant which	The power plant which	
			supplies base load of load	supplies peak load of load	
			curve is known as base load	curve is known as peak	
	2	Generating	plant Uich	load plant Low	
	2	capacity	High	Low	
	3	Firm capacity	High	Low	
	4	Working Hours	24 hours	Only during peak load	
				hours	
	5	Starting time	Both quick & more starting	Quick starting time power	
			time power plant can be	plant are selected as a peak	
			selected as a base load plant	load plant	
	6	Load factor	High	Low	
	7	Capacity Factor	High	Low	
	8	Plant use factor	High	Low Small conscitu storage	
	9	Examples	Large capacity hydro, thermal, nuclear power station	Small capacity storage hydro, pumped storage	
				hydro, gas, diesel power	
				station.	

WINTER- 2019 Examinations

Subject Code: 22327

Model Answer

Page 21 of 28


Q.5	Attempt any TWO of the following	12 Marks			
a)	State the types of radioactive wastes generated in a nuclear power station. Explain				
	methods employed for their disposal.				
Ans:	Types of radioactive waste:				
	The waste produced in nuclear power plant is in the	e form of :-			
	1. Solid Waste				
	2. Liquid Waste				
	3. Gases Waste				
	1. Solid Waste Disposal:-	(2 Marks)			
	Solid wastes removed from the reactor are very hot an	nd radioactive.			
	Solid waste is filled in a sealed container.				
	> And is kept under water for 5 to 10 years under supervision to reduces its temperature.				
	> The solid waste container is buried deeply in the ground by making tunnel, however the				
	area must be unused land, away from populated area	and there is less rain fall in that area.			
	OR				
	Solid waste is filled in a sealed container and is dispo	sed off away from sea shore.			
	OR				
	Many times old and unused coal mines, salt mines, can be used for waste disposal				
	2. Liquid Waste Disposal:-	(2 Marks)			
	> The liquid waste is diluted to a sufficient level by adding large quantity of water.				
	The liquid waste after analysis (concentration of radio sealed in a container.	pactive material are measured.) is			
	> Then it is disposal off into the sea several kilometers	away from sea shore.			
	3. Gaseous Waste Disposal:-	(2 Marks)			
	➢ Gaseous wastes are generally diluted with adding air.				
	And passed through high efficiency filter.				
	Then passed through radiation monitoring system.				
	\succ In this system concentration of radioactive material and	re measured.			
	> If it is safe then released to atmosphere at high le	evel through large height chimney.			
L					

WINTER-2019 Examinations				
Su	bject Code: 22327 <u>Model Answer</u> Page 22 of 28			
b)	b) State the functions of the following parts of hydroelectric power station: (i) Reservoir (ii) Tailrace (iii) Spillway (iv) Surge tank (v) Forebay (vi) Turbine			
Ans:	(Each definition : 1 Mark each, Total 6 Marks)			
	(i) Function of Reservoir:- (1 Marks)			
	Its function is to store the water during rainy season and supplies the same throughout the year.			
	ii) Function Tail race:- (1 Marks)			
	To carry the water leaving from turbine.			
	iii) Spillways: - (1 Marks)			
	 Its function is to discharge excess water from reservoir when the water exceeds 			
	the storage capacity of reservoir.			
	➢ It avoids damage to dam due to excess pressure of water.			
	➤ It acts as a safety valve to the dam.			
	iv) Surge Tank:- (1 Marks)			
 It protects penstock from water hammer effect when load on turbine reduce 				
	It avoids cavity effect in penstock when load on turbine increases.			
	v) Fore bay:- (1 Marks)			
	Fore bay stores more quantity of water at intake.			
	It performs the function of surge tank for small and medium head power plant.			
	vi) Turbine: (1 Marks)			
	It function is to convert kinetic energy of water into mechanical energy.			
c)	Explain with sketch; the layout of a thermo chemical based (municipal waste) power plant.			
Ans:	(Explain 3 Marks and layout 3 Marks, Total 6 Marks)			
	Layout of a thermo-chemical based power plant: (3 Marks)			
	Exhaust Gases			

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

In this process dry municipal waste (biomass fuels) is converted to produce gas, liquid fuels or oil by thermo chemical conversion Thermo-Chemical conversion are of following ways:-

- 1. Direct combustion
- 2. Gasification
- 3. Pyrolysis

Which can be used to produce heat energy. This heat energy is used to produce high pressure and high temperature steam. This steam is used to run the steam turbine. Steam turbine is coupled with generator to produce electrical energy.

WINTER-2019 Examinations

Subject Code: 22327

Model Answer

Page 24 of 28

Q.6	Attempt any TWO of the following12 Marks		
a)	Explain with sketches the construction and working of the Pelton turbine used for high		
	nead power plant.		
Ans:	(Diagram : 2 Marks, Construction : 2 Marks & Working : 2 Marks, Total 6 Marks)		
	Diagram of Pelton Wheel:- (2 Marks)		
	Splitter Water jet Fixed nozzle		
	OR equivalent Sketch		
	Construction :(2 Marks)The various parts of the Pelton turbine are:		
1. Nozzle and Flow Regulating Arrangement (Spear) Nozzle is used to increase the kinetic energy of the water that is going to strike buckets or vanes attached to the runner.			
	When the spear is move backward the rate of flow of water increases and when it is pushed forward the rate of flow of water decreases.		
	2. Runner and Buckets		
	Runner is a rotating part of the turbine. It is a circular disc on the periphery of which a number of buckets evenly spaced are fixed.		
	The buckets are made by two hemispherical bowl joined together.		
	The buckets of the Pelton turbine are made up of cast iron, cast steel bronze or stainless steel.		
	3. Casing:		
	The outer covering of the turbine is called casing.		
L			

Su	WINTER- 2019 ExaminationsSubject Code: 22327Model AnswerPa	ge 25 of 28		
	It prevents the splashing of the water. It protects the runner, runner but other internal parts of the turbine from an external damage. It also acts as a sa the case of any accident occurs. Cast iron or fabricated steel plates are used to casing of the Pelton Turbine.	afeguard in		
	In order to stop the runner in the shortest possible time a small nozzle is which directs the jet of water at the back of the vanes. This jet of water used t runner of the turbine is called breaking jet.	-		
	Working of Pelton wheel: The water stored at high head is made to flow through the penstock and	(<mark>2 Marks)</mark> reaches the		
	nozzle of the Pelton turbine.			
	The nozzle increases the K.E. of the water and directs the water in the fo	rm of jet.		
	The jet of water from the nozzle strikes the buckets (vanes) of the runner	r. This made		
	the runner to rotate at very high speed.			
	The quantity of water striking the vanes or buckets is controlled by the r	needle valve		
	present inside the nozzle.			
	The generator is attached to the shaft of the runner which converts the r	nechanical		
	energy of the runner into electrical energy.			
b)	Describe the features of solid, liquid and gas biomasses as fuel for biomass power plant.			
Ans:	IS: (2 Marks each ,7 Features of solid biomasses fuels:-	Fotal 6 Marks)		
	1. Ash is high.			
	2. Low thermal efficiency			
	3. Low calorific value and require large excess air.			
	4. Cost of handling high			
	Features of liquid biomasses fuels:-			
	1. High calorific value			
	2. No ash produces			

WINTER– 2019 Examinations <u>Model Answer</u>

Page 26 of 28

3. Ignite easily

Subject Code: 22327

4. Firing can be controlled easily

Features of Gaseous biomasses fuels :-

- 1. High calorific value
- 2. No ash produces
- 3. Ignite easily
- 4. Firing can be controlled easily

OR

Biomass fuels:-

- 1. Bagasse (Sugar cane waste)
- 2. Agriculture residual
- 3. Forestry residual
- 4. Energy trees/crop plantation/energy crops
- 5. Dead trees and tree branches
- 6. Wood processing industrial waste
- 7. Food processing industrial waste
- 8. Horticulture
- 9. Residential, commercial and industrial waste
- 10. Municipal waste
- 11. Hotels, resorts waste
- 12. Peels of fruits
- 13. Coconut shell
- 14. Ground nut shell
- 15. Vegetable waste

Su	bject Code: 22327	WINTER– 2019 Examinations <u>Model Answer</u>	Page 27 of 28
c)	MW, 10 MW, 5 MW ar power station is 40 MW station (ii) Energy suppl	er station is 30 MW. The loads having 1 nd 7 MW are connected to the power and annual load factor is 50%. Find: (i ied per year (iii) Demand factor (iv) Div	station. Capacity of the) Average load on power
Ans: Solutions:			
	i) The maximum	demand on the power station is 30 MW	,
	Maximum	Demand: 30 x 10 ³ KW	(1 Mark)
	ii) Energy supplied	d by the plant in year =	
	$= M.D \times$	$L \cdot F \times 8760$	
	$=30 \times 10^{3}$	$\times 0.50 \times 8760$	
	=1314000	000	
	=131400>	<10 ³ KWh	(1 Mark)
	iii)Average Load =		
	$=\frac{Units}{2}$	enerated in plant 8760	(1/2 Mark)
	$=\frac{131400}{870}$	$\frac{0 \times 10^3}{50} = 15 \times 10^3 \ KW$	
	$=15 \times 10^{3}$	<i>KW</i>	(1 Mark)
	iv) Diversity Facto	r =	
	Sum	of individual consumer M.D	(1/2 Mark)
	= <u>Maximur</u>	of individual consumer M.D	(4/2 Mark)
	$=\frac{10^3 (25-30)}{30}$	$\frac{(+10+5+7)}{(\times10^3)}$	
	= 1.5666 -		(1 Mark)

WINTER- 2019 Examinations
Model AnswerPage 28 of 28v) Demand Factor = $= \frac{Maximum Demand}{Install Capacity of the power Station}$ $= \frac{30 \times 10^3}{40 \times 10^3}$ = 0.75= 75 %

-----END------END------