ENGINEERING MECHANICS with Lab Manual

Bhankhar Bharat Gokaldas Vandana Somkuwar

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS4C/4344, Ansari Road, Darya Ganj, New Delhi-110002Phone: 011-23244447-48Mobile: +91-99109 09320E-mail: contact@khannabooks.comWebsite: www.khannabooks.com

Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM. How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-60-8

Book Code: DIP129EN

Engineering Mechanics

by Bhankhar Bharat Gokaldas Vandana Somkuwar

[English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Printed in India.

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, वसंत कुज, नई दिल्ली-110070 दूरमाष : 011-26131498 ई-मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahres

(Anil D. Sahasrabudhe)

ACKNOWLEDGEMENT

The author(s) are grateful to AICTE for their meticulous planning and execution to publish the technical book for Diploma students.

We sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Parekh Divyakumar Narendra, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that we state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this eld whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, we like to express our sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Bhankhar Bharat Gokaldas Vandana Somkuwar

PREFACE

The book titled "Engineering Mechanics" is an outcome of the rich experience of my teaching of basic course. The initiation of writing this book is to expose the fundamentals of mechanics as well as enable to get an insight of the subject. Keeping in mind the purpose of wide coverage as well as to provide essential supplementary information, I have included the topics as per AICTE model curriculum, in a very systematic and orderly manner throughout the book. Efforts have made to explain the fundamental concepts of the subject in the simplest possible way.

During the process of preparation of the manuscript, emphasis has also been laid on definitions, technical terms, laws and also on comprehensive synopsis of formulae for a quick revision of the basic principles. The book covers all types of medium and advanced level problems and these have presented in a very logical and systematic manner. The gradations of those problems have tested over many years of teaching with wide variety of students.

I have enriched the book with numerous solved problems in every unit for proper understanding of the related topics. It is important to note that in this the book, I have included the relevant laboratory practical pertain to each unit. In addition, besides some essential information for the users under the heading "Know More" & clarified some essential basic information in the appendix and annexure.

As far as the present book is concerned, "Engineering Mechanics" meant to provide a thorough grounding in applied mechanics on the topics covered. This book will prepare students to apply the knowledge of engineering mechanics to tackle 21st century and onward engineering challenges and address the related aroused questions to field work.

I sincerely hope that the book will inspire the students to learn and discuss the ideas behind basic principles of engineering mechanics and will surely contribute to the development of a solid foundation of the subject. I would be very much thankful to all benefices for comments and suggestions, which will contribute to the improvement of the future editions of this book. It gives us immense pleasure to place this book in the hands of the teachers and students. It was indeed a big pleasure to work on different aspects covering in this book.

Bhankhar Bharat Gokaldas Vandana Somkuwar

OUTCOME BASED EDUCATION

Outcome based education (OBE) is based on three pillars; outcome- based curriculum (OBC), outcomebased learning teaching (OBLT) and outcome-based assessment (OBA). The learning outcomes can be at program levels (POs), course level (COs), unit level (UOs) and session level outcomes (attained in classroom learning, practical's and using other basic and advanced instructional methods). The mapping between, POs and COs & COs and UOs, is given in the book so that student can connect learning at any different level directly to the program level outcomes. Assessment is an integral part of teaching – learning process. Hence, to assess learning outcomes, the difficulty level of solved and unsolved problems given in the book matches with the cognitive level of unit learning outcomes. The course level outcomes can be attain through unit outcome and practical outcomes. At the end of the programme running with the aid of outcome-based education, a student will be able to arrive at the following programme outcomes.

- **PO1 : Basic and Discipline specific knowledge :** Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- **PO2 : Problem analysis :** Identify and analyze well-defined engineering problems using codified standard methods.
- **PO3 : Design/development of solutions :** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- **PO4 : Engineering Tools, Experimentation and Testing :** Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- **PO5 : Engineering practices for society, sustainability and environment :** Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- **PO6 : Project Management :** Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- **PO7 : Life-long learning :** Ability to analyze individual needs and engage in updating in the context of technological changes.

COURSE OUTCOMES

After completing this course, student will be able to:

- 1. Identify the force systems for given conditions by applying the basics of mechanics.
- 2. Determine unknown force(s) of different engineering systems.
- 3. Apply the principles of friction in various conditions for useful purposes.
- 4. Find the centroid and centre of gravity of various components in engineering systems.
- 5. Select the relevant simple lifting machine(s) for given purposes.

Course	Expected Mapping with Programme Outcomes (1 - Weak Correlation; 2 - Medium correlation; 3 - Strong Correlation)						
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7
CO-1	3	-	-	2	1	-	-
CO-2	2	3	3	3	2	-	-
CO-3	2	3	3	2	2	1	1
CO-4	2	3	2	2	2	1	1
CO-5	2	2	2	3	3	1	2

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

General Terms						
Abbreviations	Full form	Abbreviations	Full form			
CG	Center of gravity	RHS	Right Hand Side			
СО	Course Outcome	UDL	Uniformly Distributed Load			
LHS	Left Hand Side	UO	Unit Outcome			
MA	Mechanical Advantage	VR	Velocity Ratio			
PO	Programme Outcome					
	ι	Jnits Used				
Abbreviations	Full form	Abbreviations	Full form			
cm	centimeter	mm ²	Square milimeter			
GN	Giga Newton	mm ³	Cubic milimeter			
kg	kilogram	MN	Mega Newton			
kN	Kilo Newton	N	Newton			
kN m	Kilo Newton meter	N m	Newton meter			
kN/m	Kilo Newton per meter	N mm	Newton meter			
m	meter	m°	Degree			
mm	millimeter					

LIST OF SYMBOLS

Symbols	Description	Symbols	Description
A	Area	d	Distance
С	Center	k	Kilo / Kinetic
E	Equilibrium force	m	Mass / Meter
F	Force / Frictional force	s	Static
Н	Horizontal	w	Intensity of Uniformly Distributed Load (UDL)
L	Length	$(\overline{x}, \overline{y})$	Coordinates of Center of Gravity (CG)
М	Moment of force	α (Alpha)	Angle / Angle of friction
Ν	Newton / Normal reaction	β (Beta)	Angle
0	Origin of Axis	η (Eta)	Efficiency
Р	Force / Effort	γ (Gama)	Angle
R	Reaction / Resultant force	μ (Mu)	Co-efficient of friction
Т	Time / Tension force	Θ, ϕ (Phi)	Angle / Angle of repose
V	Vertical / Volume	Σ (Sigma)	Algebraic summation
W	Load / Self Weight	θ (Theta)	Angle
X, Y, Z	Axis		

LIST OF FIGURES

Figure No.	Title of figure	Page No.
Unit 1	BASIC OF MECHANICS AND FORCE SYSTEM	,
Fig. 1.1	Characteristics of force	05
Fig. 1.2	Collinear force system	06
Fig. 1.3	Coplanar force system and non-coplanar force system	06
Fig. 1.4	Parallel force system	06
Fig. 1.5	Concurrent force system	07
Fig. 1.6	Non-concurrent non-parallel force system	07
Fig. 1.7	Equilibrium law of force	08
Fig. 1.8	Principle of superposition of force	08
Fig. 1.9	Orthogonal components	09
Fig. 1.10	Non-orthogonal components	10
Fig. 1.11	Law of parallelogram of force	10
Fig. 1.12	Law of triangle of force	11
Fig. 1.18	Moment of force	18
Fig. 1.19	Varignon's principle	19
Unit 2	EQUILIBRIUM	
Fig. 2.1	Equilibrium and Equilibrant	41
Fig. 2.2	Free body diagram	42
Fig. 2.3	A sphere hang by string & rest on vertical smooth wall	43
Fig. 2.4	A sphere resting in V-shaped groove	44
Fig. 2.5	Lami's theorem	44
Fig. 2.9	Types of load	49
Fig. 2.10	Simply supported beam	50
Fig. 2.11	Cantilever beam	50
Fig. 2.12	Overhang beam	50
Fig. 2.13	Propped cantilever	50
Fig. 2.14	Continuous beam	51

Fig. 2.15	Fixed beam	51
Fig. 2.25	Bow's notation	61
Fig. 2.26	Funicular polygon graphical method	61
Unit 3	FRICTION	
Fig. 3.1	Friction	73
Fig. 3.2	Limiting friction	74
Fig. 3.3	Variation of F with P	75
Fig. 3.4	Angle of friction	75
Fig. 3.5	Angle of repose	76
Fig. 3.6	Equilibrium of body with inclined external force applied	78
Fig. 3.10	Equilibrium of body on inclined plane surface	83
Unit 4	CENTROID AND CENTER OF GRAVITY	
Fig. 4.1	Center of gravity (CG)	94
Fig. 4.2	Axis of reference	95
Fig. 4.3	Axis of symmetry	96
Unit 5	SIMPLE LIFTING MACHINES	
Fig. 5.1	Law of machine	118
Fig. 5.2	Simple axle & wheel	124
Fig. 5.3	Differential axle & wheel	125
Fig. 5.4	Worm & worm wheel	125
Fig. 5.5	Single purchase crab winch	126
Fig. 5.6	Double purchase crab winch	127
Fig. 5.7	Simple screw jack	127
Fig. 5.8	Weston's differential pulley block	128
Fig. 5.9	Geared pulley block	129

LIST OF TABLES

Table No.	Title of table	Page No.
Table 1.1	Fundamental SI units	04
Table 2.1	Types of supports	48
Table 3.1	Approximate range of coefficient of friction	77
Table 4.1	Centroid of standard shapes [1D & 2D elements]	97
Table 4.2	Center of Gravity (CG) of three dimensional standard solid	105

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should beenhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manoeuvre time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level	Teacher should check	Student should be able to	Possible mode of assessment
Creating	Students ability to create	Design or Create	Mini project
Evaluating	Students ability to justify	Argue or Defend	Assignment
Analysing	Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
Applying	Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
Understanding	Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
Remembering	Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each PO before the start of the programme.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each UO before the start of a unit in each course.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

CONTENTS

For	rewor	d		iii
Acl	knowl	edgem	ent	v
Pre	face			vii
Ou	tcome	e Based	Education	ix
Со	urse C	Dutcom	25	xi
Ab	brevia	itions a	nd Symbols	xiii
		mbols	,	xiv
	t of Fi			xv
	t of To	-		xvii
	-		eachers	xviii
		-	tudents	xix
1.	Ba	sics of	f Mechanics and Force System	1–39
			SPECIFICS	1
			DNALE	1
		PRE-F	REQUISITES	1
			OUTCOMES	2
	1.1	Signifi	cance and Relevance of Mechanics	2
	1.2	Funda	mental Concepts	3
	1.3	Scalar	and Vector	3
	1.4	Units	of Measurement [SI Units]	4
	1.5	Force		4
		1.5.1	Introduction	4
		1.5.2	Unit of Force in SI System	4
			Characteristics if Force	4
			Effect of Force	5
		1.5.5	Force System and Classification	5
		1.5.6	Principles of Static for Force	8
	1.6	Copla	nner Concurrent Forces	9
		1.6.1	Resolution of Force	9
	1.7	Comp	osition of Force (Resultant Force)	10
		1.7.1		10
	1.8	-	nner Non-Concurrent Forces	18
		1.8.1		18
		1.8.2	Varignon's Principle Or Principle Of Moments	19

		1.8.3	Analytical Method For Parallel Force System	19
		1.8.4	Analytical Method For Non-Concurrent Force System	21
			Unit Summary	24
			Exercise	27
			Practicals	29
			Know More	38
			References and Suggested Readings	39
2.	Equ	uilibri	um	40–71
	-	UNIT	SPECIFICS	40
		RATIO	ONALE	40
		PRE-F	REQUISITES	40
		UNIT	OUTCOMES	41
	2.1	Equili	brium & Equilibrant	41
		2.1.1	Condition of Equilibrium	42
		2.1.2	Free Body and Free body diagram	42
	2.2	Lami's	Theorem	44
	2.3	Types	of supports, loading & beam	47
	2.4	Beam	reactions	52
	2.5	Beam	reaction by Graphical method	60
		Unit S	ummary	63
		Exerci	ise	64
		Practi	cals	68
		Know	More	71
		Refere	ences And Suggested Readings	71
3.	Frie	ction		72–92
		UNIT	SPECIFICS	72
		RATIO	ONALE	72
		PRE-F	REQUISITES	73
		UNIT	OUTCOMES	73
	3.1	Frictio	Dn	73
		3.1.1	Limiting friction	74
		3.1.2	Coefficient of friction (l)	75
		3.1.3	Angle of Friction (m)	75
		3.1.4	Angle of repose (e)	76
		3.1.5	Types of friction	76
		3.1.6	Laws of friction	77
	3.2	Equili	brium of A Body on A Horizontal Plane Surface	78

		3.2.1 Equilibrium of a body on a horizontal plane with horizontal external force (Fig. 3.1)	78
		3.2.2 Equilibrium of a body on a horizontal plane with inclined external force (Fig. 3.6)	78
	3.3	Equilibrium of A Body on an Inclined Plane Surface	82
		3.3.1 Equilibrium of a body on an Inclined Plane with Parallel	
		External Force to Plane (Fig. 3.10)	82
		Unit Summary	86
		Exercise	87
		Practical	89
		Know More	92
		References And Suggested Readings	92
4.	Cei	ntroid and Center of Gravity	114
		UNIT SPECIFICS	93
		RATIONALE	93
		PRE-REQUISITES	93
		UNIT OUTCOMES	94
	41	Introduction	94
		4.1.1 Center of gravity (CG)	94
		4.1.2 Centroid	95
		4.1.3 Comparison between Center of Gravity and Centroid	95
		4.1.4 Axis of Reference	95
		4.1.5 Axis of Symmetry	96
	4.2	Centroids of Standard Shapes	96
		Centroid of Composite Figures	99
	4.3.		99
	4.4		104
	4.5	Centre of Gravity (CG) of Composite Solids	105
		Unit Summary	110
		Exercise	110
		Practical	112
		Know More	114
		References and Suggested Readings	114
5.	Ce	ntroid and Center of Gravity 115–	152
		UNIT SPECIFICS	115
		RATIONALE	115
		PRE-REQUISITES	115
		UNIT OUTCOMES	116
	5.1	Definitions	116

5.2	Technical Terms Related to Simple Lifting Machines	117
5.3	Velocity Ratio for Different Simple Lifting Machines	124
	Unit Summary	132
	Exercise	133
	Practicals	135
	Know More	152
	References and Suggested Readings	152
APF	PENDIX-A : Suggestive Template for Practicals	153-154
APF	PENDIX-B: Indicative Guidelines for evaluation of Group presentation for	155
	New Practicals/ Projects/ Activities	
APF	PENDIX-C: Index for Practicals	156-157
Ann	exure-I: Some General and Specific Instructions when Working in the Laboratory	158-159
Refe	erences for Further Learning	160
СО	and PO Attainment Table	161
Inde	2X	163-164