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PREFACE

An engineer always endeavours to design structural or machine members that are
safe, durable and economical. To accomplish this, he has to evaluate the load-carrying
capacity of the members so that they are able to withstand the various forces acting
on them. The subject Strength of Materials deals with the strength, stability and rigidity
of various structural or machine members such as beams, columns, shafts, springs,
cylinders, etc. These days, a number of books on the subject are available in the
market. However, it is observed that most of the books are feature-wise fine when
considered on parameters like coverage of a topic, lucidity of writing, variety of solved
and unsolved problems, quality of diagrams, etc., but usually, the students have to
supplement a book with another book for one reason or the other. The present book
aims to cover all good features in a single book.

The book is mainly aimed 10 be useful to degree-level students of mechanical and
civil engineering as well as those preparing for AMIE and various other competitive
examinations, However, diploma-level students will also find the book to be of immense
use. The book will also benefit post-graduate students to some extent as it also contains
some advance topics like bending of curved bars, rotating discs and cylinders, plastic
bending and circular plates, etc. The salient features of the book are the following:

* A moderately concise and compact book covering all major topics

+ Simple language to make it useful even to the average and weak students

¢ Logical and evolutionary approach in descriptions for better imagination and

visualisation

e Physical concepts from simple and readily comprehensible principles

¢ Large number of solved examples

* Theoretical questions as well as sufficient number of unsolved problems at the

end of each chapter

¢ Summary at the end of each chapter

+ An appendix containing objective-type questions

* Another appendix containing important relations and results

It is expected that students using this book might have completed a course in
applied mechanics. Chapters 1 and 2 introduce the concept of simple and compound
stresses at a point. It is shown that an axial load may produce shear stresses along
with normal stresses depending upon the section considered. The utility of Mohr’s
circle in transformation of stress at a point is also discussed. Chapter 3 explains the
concept of strain energy that forms the basis of analysis in many cases. Chapters 4 to
8 are related to beams which may be simply supported, fixed at one or both ends or
continuous having more than two supports. The analysis includes the computations
of bending moment, shear force and bending and shear stresses under transverse
loads. The concept of plastic deformations of beams beyond the elastic limit, being
an advanced topic is taken up later and is discussed in Chapter 16. Sometimes, curved
members such as rings and hooks are also loaded. Chapter 9 discusses the stresses
developed in such members. The theory of torsion is developed in Chapter 10 which
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also includes its application to shafts transmitting power. The springs based on the
same theory are discussed in the subsequent chapter. Columns are important members
of structures. Chapter 12 discusses the equilibrium of columns and struts. However,
the computation of stress in plane frame structures which is mostly included in the
civil engineering curriculum is discussed later in Chapter 17. Some other important
machine members include cylinders and spheres under internal or external pressures;
flywheels, discs and cylinders which rotate while performing the required function;
circular plates under concentrated or uniform loads. These topics are covered in
chapters 13 to15. Chapter 18 discusses the properties of materials as well as the methods
to determine the same.

Though students are expected to exert and solve the numerical problems given at
the end of each chapter, hints to most of these are available at the publisher’s website
of the book for the benefit of average and weak students. However, full solutions of
the unsolved problems are available to the faculty members at the same site. The
facility can be availed by logging on to http://www.mhhe.com/rattan

In preparing the script, I relied heavily on the works of renowned authors whose
writings are considered classics in the field. I am indeed indebted to them. [ sincerely
acknowledge the help of my many colleagues, who helped me in one form or the
other in preparing this treatise. [ also acknowledge the efforts of the editorial and
production staff at Tata McGraw-Hill for taking pains in bringing out this book in an
excellent format.

I am immensely thankful to the following reviewers who went through the
manuscript and enriched it with their feedback.

Name Affiliation

Anup Maiti Haldia Institure of Tech., Haldia,
Wesr Bengal

P K Kundu Dem. of Mechanical Engineering,
Heritage Institute of Technology,
Kolkata

P S Mukherjee Dept. of Mechanical Engineering,
Indian School of Mines, Dhanbad

A K Duita Dept. of Applied Mechanics

National Institute of Technology, Durgapur
A Dutta Dept. of Civil Engineering,

HT, Guwahati

Sukhwinder Singh Jolly Dept. of Mechanical Engineering,

Sri Sukhmani Instinute of Engineering and Technology,
Derabossi, Punjab

Chandana Rath School of Materials Science and Technology,
Banaras Hindu University, Varanasi

Sunil Kumar Srivastava Dept. of Mechanical Engineering,
Madan Mohan Malviva Engineering College,
Garakhpur

(Contd)
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S S Pathak Dept. of Mechanical Engineering,
IEC College of Engineering and Technology,
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Aasim Quadri Dept. of Mechanical Engineering,
Gualgotia College of Engineering and Technology,
Greater Noida

Abhay Kakirde Dept.of Mechanical Engineering,
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D R Pachpande Dept.of Civil Engineering,

J T Mahajan College of Engineering,
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K Palanisamy Dept. of Civil Engineering,
National Institute of Technology,
Tiruchirappalli

S Shivaraj Depr. of Civil Engineering,
Karunya University, Sadiapet

J Girish Dept. of Civil Engineering,

Bapatla Engineering College, Bapatla

Finally, I am also indebted to my wife, Neena, and my children Ravneet and Jasmeet,
for being patient with me while I went about the arduous task of preparing the
manuscript. But for their sacrifice, | would not have been able to complete it in the
most satisfying way.

A creation by a human being can never be perfect. A number of mistakes might
have crept in the text. I shall be highly grateful to the readers and the users of the book
for their uninhibited comments and pointing out the errors. Do feel free to contact me
at ss_rattan@hotmail.com

S S Rattan
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1.1 INTRODUCTION

External forces acting on individual structural or machine members of an engineering
design are common. An engineer always endeavours to have such a design so that
these are safe, durable and economical. Thus load carrying capacity of the members
being designed is of paramount importance to know their dimensions to have the
minimum cost. The subject Strengrh of Materials deals with the strength or the load-
carrying capacity of various members such as beams and columns. It also considers
their stability and rigidity. Theory of structures involves the application of these
principles to structures made up of beams, columns, slabs and arches.

Force acting on a body is termed as load. A concentrated load is also known as a
point load and a distributed load over a length is known as distributed load. Distributed
load of constant value is called uniformly distributed load. If a structure as a whole is
in equilibrium, its members are also in equilibrium individually which implies that
the resultant of all the forces acting on a member must be zero. However, the forces
acting on a body tend to deform or torn the body. For example, a load P acting on a
body tends to pull it apart (Fig. 1.1a). This type of pull may also be applied if one end
of the body is fixed (Fig. 1.1b). In this case, the balancing force is provided by the
reaction of the fixed end. Such type of pulling force is known as tension or tensile
force. A tensile force tends to increase the length and decrease the cross-section of
the body.

In a similar way, a force tending to push or compress a body is known as compression

or compressive force which tends to shorten the length (Fig. 1.1¢).
X
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Fig. 1.1
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Usually, the forces acting on a body along the longitudinal axis are known as
direct or axial forces and the forces acting normal to the longitudinal axis of a body
are known as transverse or normal forces.

In the elementary theory of analysis, a material subjected to external forces is
assumed to be perfectly elastic, i.e. the deformations caused to the body totally
disappear as soon as the load or forces are removed. Other assumptions are that the
materials are isotropic (same properties in all directions) and homogeneous (same
properties anywhere in the body).

1.2 STRESS
The applied external forces on a body are transmitted to the supports through
the material of the body. This phenomenon tends to deform the body and causes
it to develop equal and opposite internal forces. These internal forces by virtue
of cohesion between particles of the material tend to resist the deformation. The
magnitude of the internal resisting forces is equal to the applied forces but the direction
is opposite.

Let the member shown in Fig. 1.1a be cut through the section X-X as shown in
Fig. 1.2. Now, each segment of the member is in equilibrium under the action of
force P and the internal resisting force. The resisting force per unit area of the
surface is known as infensity of stress or simply stress and is denoted by ¢. Thus if
the load P is assumed as uniformly distributed over a sectional area A, then the
stress ¢ is given by

Fig. 1.2

o= P/A (1.1)
However, if the intensity of stress is not uniform throughout the body, then the
stress at any point is defined as

o= 0P/BA
where OA = Infinitesimal area of cross-section
and P = Load applied on area 6A

The stress may be tensile or compressive depending upon the nature of forces
applied on the body.
Stress at the elastic limit is usually referred as proof stress.

Units

The unit of stress is N/m? or Pascal (Pa). However, this is a very small unit, almost the
stress due to placing an apple on an area of 1 m?. Thus it is preferred to express stress
in units of MN/m? or MPa.
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1 MN/m? = 1 MPa = | x 10® N/m? = 1 N/mm?
Also 1 GPa = 1000 MPa = 1000 N/mm? = 1 kN/mm?

In numerical problems, it is always convenient to express the units of stress
mentioned in MPa and GPa in the form of N/mm?,

When two equal and opposite parallel forces not in the same line act on two parts of
a body, then one part tends to slide over or shear from the other across any section and
the stress developed 1s termed as shear stress. In Fig. 1.3a and b, the material is
sheared along any section X-X whereas in a riveted joint (Fig.1.3c), the shearing is
across the rivet diameter.

1
4 : SHEARING
i : P P
T —
x'p x Y
(a) () (c)
Fig. 1.3

If P is the force applied and A is the area being sheared, then the intensity of shear
stress is given by

T=P/A (1.2)
and if the intensity of shear stress varies over an area,
7= 6P/6A

Remember that shear stress is always tangential to the area over which it acts.

Complimentary Shear Stress

Consider an infinitely small D c D T C
rectangular element ABCD under 7 ‘IT T
shear stress of intensity Tacting on y
planes AD and BC as shown in Fig. Jr_
T
A A—m——»1B

1.4a. It is clear from the figure that
the shear stress acting on the
element will tend to rotate the (a) Fia. 1.4 (b)
block in the clockwise direction. g &
As there is no other force acting on the element, static equilibrium of the element can
only be attained if another couple of the same magnitude is applied in the counter-
clockwise direction. This can be achieved by having shear stress of intensity T° on the
faces AB and CD (Fig. 1.4b).

Assuming x and y to be the lengths of the sides AB and BC of the rectangular
element and a unit thickness perpendicular to the figure,

The force of the given couple = 1.(y.1)
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The moment of the given couple = (1.v).x

Similarly,

The force of balancing couple = 7°.(x.1)

The moment of balancing couple = (t'.x).¥

For equilibrium, equating the two,

(ty)x=(t"x)y or =1
which shows that the magnitude of the balancing shear stresses is the same as of the
applied stresses. The shear siresses on the transverse pair of faces are known as
complimentary shear stresses. Thus every shear stress is always accompanied by an
equal complimentary shear stress on perpendicular planes.

Owing to the characteristic of complimentary shear stresses for the equilibrium of
members subjected to shear stresses, near a free boundary on which no external force
acts, the shear stress must follow a direction parallel to the boundary. This is because
any component of the shear force perpendicular to the surface will find no
complimentary shear stress on the boundary plane. The presence of complimentary
shear stress may cause an early failure of anisotropic materials such as timber which
is weaker in shear along the grain than normal to the grain.

1.4 STRAIN

The deformation of a body under a load is proportional to its length. To study the
behaviour of a malterial, it is convenient to study the deformation per unit length of a
body than its total deformation. The elongation per unit length of a body is known as
strain and is denoted by Greek symbal £ If A is the elongation of a body of length L,
the strain £ is given by
E=A/L (1.3)
As it is a ratio of similar quantities, it is dimensionless.

Shear Strain

A rectangular element of a body is distorted by shear
stresses as shown in Fig. 1.5, If the lower surface is assumed
Lo be fixed, the upper surface slides relative to the lower
surface and the corner angles are altered by angle . Shear
strain is defined as the change in the right angle of the
element measured in radians and is dimensionless. Fig. 1.5

1.5 MODULUS OF ELASTICITY AND MODULUS
OF RIGIDITY

For elastic bodies, the ratio of stress to strain is constant and i1s known as Young's
Modulus or the Modulus of Elasticity and is denoted by E, i.c.,
E=oale (1.4)
Strain has no units as it is a ratio. Thus £ has the same units as stress.
The materials that maintain this ratio are said 1o obey Hook s law which states that
within elastic limits, strain is proportional to the stress producing it. The elastic limit
of a matenial is determined by plotting a tensile test diagram (Refer section 1.15).
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Young's modulus is the stress required to cause a unit strain. As a unit strain means
elongation of a body equal to original length (since £= A/L), this implies that Young's
modulus is the stress or the force required per unit area to elongate the body by its
original size or to causes the length to be doubled. However, for most of the engineering
materials, the strain does not exceed 1/1000. Obviously, mild steel has a much higher
value of Young’'s modulus E as compared to rubber.

Similarly, for elastic materials, the shear strain is found to be proportional to the
applied shear stress within the elastic limit. Modulus of rigidity or shear modulus
denoted by G is the ratio of shear stress to shear strain, i.e.

G=1l¢ (1.5)

1.6 ELONGATION OF A BAR

An expression for the elongation of a bar of length L and cross-sectional area A under
the action of a force P is obtained below:

As E= E o E= E- or _ﬁ. =...P._
E E L AE
. PL
Thus elongation of abar of length L, A= E (1.6)

1.7 PRINCIPLE OF SUPERPOSITION .

The principle of superposition states that if a body is acted upon by a number of loads
on various segments of a body, then the net effect on the body is the sum of the effects
caused by each of the loads acting independently on the respective segment of the
body. Thus each segment can be considered for its equilibrium. This is done making
a diagram of the segment alongwith various forces acting on it. This diagram is
generally referred as free body diagram. The principle of superposition is applicable
to all parameters like stress, strain and deflection. However, it is not applicable to
materials with non-linear stress-strain characteristics which do not follow Hook’s law.

Example 1.1 A steel bar of 25-mm diameter is acted upon by forces as shown in
Fig. 1.6a. What is the total elongation of the bar? Take E = 190 GPa.

A B C D
=2 m—ttt—itet——3 ——{
im
{a)
A [
60 —=— —==50 B0 --— == A0 B[ == =50}
A B B ¢ D o] D
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Solution Area of the section = % (25)* = 490.88 mm?, E = 190 GPa

= 190 000 N/mm?
Forces in various segments are considered by taking free-body diagram of each
segment as follows (Fig. 1.6b):

Segment AB: At section AA, it is 60 kN tensile and for force equilibrium of this
segment, it is to be 60 kN tensile at BB also.

Segment BC:
Force at section BB = 60 kN (as above) + 20 kN (tensile force at section BR)

= 80 kN (tensile) = Force at section CC

Segment CD:
Force at section CC = 80 kN (as above) — 30 kN (compressive force at section CC)
= 50 kN (tensile) = Force at section DD
PL
Elongation is given by, A= —
g g Y AE

(60 000 x 2000 + 80 000 x 1000 + 50 000 x 3000) = 3.75 mm

= 490.88 x 190 000

Example 1.2 A steel circular bar has three segments as shown in Fig. 1.7a.
Determine

(i) the total elongation of the bar
(ii) the length of the middle segment to have zero elongation of the bar
(iii) the diameter of the last segment to have zero elongation of the bar
Take E = 205 GPa.

A
:.; B c D
2 15 mm _a_gnku?saum_u‘_ 20 mm L= 80 kN
; :!Elinm {I’I
A B c o
}e— 150 mm —=}+— 200 mm —»{+— 250 mm —|
(a)
A B c D
b I R S
A B D
8 (
250 kN —»- Fe— 250 kN
Fig. 1.7

Solution Forces in various segments (Fig. 1.7b):
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(i) Segment CD: At section DD, it is 80 kN tensiles and for force equilibrium of this
segment, at CC also it is to be 80 kN tensile.

Segment BC:

Force at section CC = 80 kN (as above) — 330 kN (compressive force at section CC)
= - 250 kN (compressive) = Force at section BB

Segment AB:

Force at section BB = = 250 kN (as above) + 300 kN (tensile force at section BB)
= 50 kN (tensile) = Force at section AA

Total elongation,

_ l (mmux|5u_25t}m0x2m+suncnxzﬁn]
 (m/4) x 205 000 15 307 20°

(33 333.3 - 55 555.5 + 50 000) = 0.173 mm

~ 161007
(ii) Let the length of the middle segment be L to have zero elongation of the bar.
1 250 000 x L
= 333333 - —————+ 50000 | =0
Then a 161 I}D?[ 30? )
3{}2
or L= ‘25[][}0{}:'{83333'3:30”“““
(iii) Let the diameter of the last segment be d to have zero elongation of the bar.
1 80 000 x 250
A= 33333.3-555555+ *—-—-———ﬂ-] =
161 007 ( d*
80 000 x 250
= —— =900 =
d* 22 2222 or d=30mm

1.8 BARS OF TAPERING SECTION
Bars of tapering section can be of conical section or of trapezoidal section with uniform
thickness.

Conical Section

Consider a bar of conical section under the
action of axial force P as shown in Fig. 1.8. P

Oy

Let D = diameter at the larger end
d = diameter at the smaller end f— X —>] é:_
L = length of the bar et L -l
E = Young's modulus of the bar Fig. 1.8
material
Consider a very small length dx at a distance x from the small end.

The diameter at a distance x from the smallend=d + 2 =4 X
L



The extension of a small length

O L [ _E)
a( D-d " AE
E[d-!- L I] .E
4P
Extension of the whole rod = «dx

o7t(d +(D-dwL) .E

AP Dod VgL : L
mE L mE (D -d)| (d +D - d)uiL)

___4PL [lﬂl)_ 4PL [D—d]_ 4PL

nED-d)\d D) mEMD-d)\ dD n EdD 7
Trapezoidal Section of {niform Thickness

Let
B = width at the larger end b = width at the smaller end

t = thickness of the section L = length of the bar
£ = Young's modulus of the bar material

Consider a very small length dx at a T
distance x from the small end of the rod -

(Fig.1.9). hI 5 o
The width at a distance x from the
small end b— X ] b

_ 5
=b+ BLb+x=b+.b: kL

...[Taking k = (B - b)/L) Fig. 1.9
The area of cross-section at this distance = (b + kx).1
Pox
(b + kx Jt.E

I p—

The extension of the small length =

Extension of the whole rod

PE

L
'!(b+k.r):£ CIE} (b + ko)

Pl

L P
——] b + kx) —1 lo
-y [log, ( )], = h( og,
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The elongation due to self-weight of bars of rectangular and conical sections may be
considered as follows:

Rectangular Section LILLLLLLLSSE

Consider a bar hanging freely under its own weight as shown
in Fig: 1.10.
Consider a small length dx of the bar at a distance x from
the free end.
Let A = area of cross-section of the bar
w = weight per unit length of the bar
W = weight of the whole bar = wil
W, = weight of the bar below the small section = wx

W,dx _wxdx
AE  AE Fig. 1.

ft— 2 —{f—

The extension of a small length =
Extension of the whole rod

L .2 2
S L R Wo Lol Wi (1.9)
! AE AE| 2 2AE  2AE ZAE
= deformation due to a weight W at the lower end/2

~ Thus the deformation of the bar under its own weight is equal to half the deformation
due to a direct load equal to the weight of the body applied at the lower end.

Conical Section

Consider a small length dx of the bar at a distance x from the
free end (Fig. 1.11).
Let A = area of cross-section at the small length
w = weight per unit volume of the bar
W, = weight of the bar below the section = wAx/3

L]

0

) Ww.. Ax.
The extension of a small length = —* Bx _ wArdx
AFE 3AE
L L
wAx W
si = | ——udx = — | xdx
Extension of the whole rod ;EEAE 3E J
wL:
= 1.10
6F (1.10)

Comparing it with Eq. 1.9, this elongation is one-third that of the rectangular section
of the same length under own weight of the bar.

11,10 COLUMN OF UNIFORM STRENGTH « « . =+~

Let a bar of varying cross-sectional area be acted upon by a load P as shown in
Fig. 1.12. Consider a small length dx at a distance x from the top.



Let A = area at distance x
A + dA = area at distance x + dx

w = weight per unit volume of
the bar

Considering the balance of forces acting
on the small length,

O(A +dA) = 0 A + weight of
the small length dx of the bar

or O(A+ dA) = 0A + wAdx Fig. 1.12

or o.dA = wAdx or Eﬁ- = Efit
(o]

Integrating both sides, log, A = Trx+c
o
At the top, where x=0, let AreaA=a

Then, log,a=0+C or C=log.a
W A W
Thus lo =—+log.a or log —=—x
Ee o Be Ee a o
or A el
4]
or A = ae"™° (1.11)

1.11 STATICALLY INDETERMINATZ SYSTEMS

When a system comprises two or more membe,s of different materials, the forces in
various members cannot be determined by thz principle of statics alone. Such systems
are known as statically indeterminate systzms. In such systems, additional equations
are required to supplement the equation: of statics to determine the unknown forces.
Usually, these equations are obtained irom deformation conditions of the system and
are known as compatibility equations. A compound bar is a case of an indeterminate
system and is discussed below:

Compound Bar

A bar consisting of two or mere bars of different materials in parallel is known as a
composite or compound bar. in such a bar, the sharing of load by each can be found
by applying equilibrium and the compatibility equations.

Consider the case of a solid bar 2
enclosed in a hollow tube 2s shown in FTTTTTTTETTETTTTTITS
Fig. 1.13. Let the subscrints 1 and 2 p e P
denote the solid bar and the hollow ———————

tube respectively.

Equilibrium equation As the Fig. 1.13
‘total load must be equal to the load taken by individual members,

P=P +P, (i)
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Compatibility equation The deformation of the bar must be equal to the tube.

RL _ AL p_ BAE (ii)
AE,  AE, AE,
Inserting (ii) in (i),
po BAE  , _ BAE +PAE _ B(AE + AE,)

AE, AE, A E,

or Py = __PAE, (1.12)
AE + AE,

Similarly, P, = PAE, (1.13)
AL + AE,

Example 1.3 Three equally spaced rods in the same vertical plane support a
rigid bar AB. Two outer rods are of brass, each 600-mm long and of 25-mm diameter.
The central steel rod is 800-mm long and 30 mm in diameter. Determine the forces in
the bars due to an applied load of 120 kN through the mid-point of the bar. The bar
remains horizontal after the application of load. Take E /E, = 2.

Solution Refer Fig. 1.14.

As the bar remains horizontal after the —»| |=— 30 mm
application of load, the elongation of each of E e
the brass bars and of the steel bar are the same. @ . » T
= fe
From compatibility equation, Ay, = A, % & % £ é
»
. AL _EL g g
AbEb "q'.'sE.': A _L J—
s Al * 1B
L Efd )
or Py = L E|d P, 120 kN
- Fig. 1.14
_ 80 1(25Y,
T 60072130 ) ¢
or P,=0463 P,

From equilibrium equation, 2P, + P, = P
or 2x0463 P, +P, =120 or 1926 P,=120
or P,=623kN and P,=28.84 kN

Example 1.4 Three equidistant vertical rods each of 20-mm diameter support
a load of 25 kN in the same plane as shown in Fig. 1.15. Initially, all the rods are
adjusted to share the load equally. Neglecting any chance of buckling, and raking
E =205 GPa and E_= 100 GPa, determine the [final stresses when a further load of
20 kN is added.
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Solution A= (m4)20* = 100 £ mm?

25 000
Initially, the stress in each rod = ——— = 26.53 MPa
Y 1007 x 3 -
On adding a further load of 20 kN, let the l
increase of stress in the steel rod be o, and in !
the copper rod @ ' p |
Then from equilibrium equation, the a W = T
additional load P is s S Eosm
= “ o @ | 3.6m
(20, +0)A =P or (20,+ 0.) x 1007 e 8 -] | g -]
= 20 000 (i) T l
From compatibility equation, A, = A, . 1 7 I |
Gc[‘i: = {Ts'[‘s Fig. 1.15
El.‘ E.i
L, E, 3.6 _ 100 000
or g,= —.—0,= — X———0, or 0.=0.6270,
L. E ' 28 205000 ° ¢ !

Inserting this value of @, in (i)

s (20, + 0.627 g,) x 1007z = 20 000

or 2.627 o, = 63.662

or o, = 24.23 MPa and .= 15.19 MPa
Final stress in steel rod = 24.23 + 26.53 = 50.76 MPa
Final stress in copper rod = 15.19 + 26.53 = 41.72 MPa

Example 1.5 A steel rod of 16-mm diameter passes through a copper tube of
20 mm internal diameter and of 32-mm external diameter. The steel rod is fitted with
nuts and washers at each end. The nuts are tightened till a stress of 24 MPa is developed
in the steel rod. A cut is then made in the copper tube for half the length to remove
2 mm from its thickness. Assuming the Young's modulus of steel to be twice that of
copper, determine

(i) the stress existing in the steel rod.

(ii) the stress in the steel rod if a compressive load of 4 kN is applied to the ends

of the steel rod.

Solution Refer Fig. 1.16.

_ I COPPER 1
- 777777 77777777774 |

16 mm STEEL

20 mm

-

PP T T TTITTIIFITTIII

Fig. 1.16
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T 2

A = 7" 16% = 647 mm
and A, = %-:322 ~20°) = 1567 mm

On tightening the nut, the steel rod is elongated and the stress induced is tensile
~ whereas the tube is shortened and the stress is compressive.

Let T, = stress in the steel rod = 24 MPa
0., = stress in the copper tube
From equilibrium equation
Push on copper tube = Pull on steel rod
O, XA, =0,%xA, or O,x156mr=24x64x
or G, = 9.846 MPa (compressive)
(i) When the copper tube is reduced in diameter,

o
A, = reduced area of cross-section of the tube = 7 (287 - 20%) =961

Let T,, = stress in the steel rod
0., = stress in the reduced section of wbe
and T, = stress in the remaining section of tube

From equilibrium equation,

Force in each section of copper tube as well as in the steel rod are to be equal

i.e. O, X% 156m= 0., x%nr=0,x641 (1)

T = 0.4103 T3 and O = 0.6667 T3

From compatibility equation,

When the cross-section of the tube is reduced, the change in length of the rod as
well as of the tube is 1o of the same nature, i.e. either the length of both is increased or
decreased. Let us assume that the length of each is reduced which means a reduction
of tensile stress in the rod and increase of compressive stress in the tube.

Thus reduction in length of steel rod = reduction in length of copper tube

051 =0s2 ; _ 02 =00 _£+ O, ~ O E
E, E 2 E. 2
or 0, - 0, = 0, + 0 —20, e (E,=2E) (ii)
or 24 - 0, = 04103 0, + 0.66670,, - 2 x 9.846
or 20770, = 43.692 or 0,, = 21.036 MPa

As the stress in the steel rod is decreased from 24 MPa to 21.036 MPa, the
assumption of reduction of the length of the two is correct. In case, the lengths are
assumed to be increased, the stress in the steel rod 1s increased and in the copper tube
decreased. The equation formed would have been

O2 =% ; - %a~=0x L o,-0,

E, E, 2 E,
and the result would have been the same iLe. 0, = 21.036 MPa which would have
indicated that the length actually would be reduced due to decrease in the stress of

steel rod.

N
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(i) When a compressive load of 4 kN is applied to the ends of the steel rod, the
length of the rod is further reduced.

Equilibrium equation

O, % 156 = 0,3 %961 =0,,% 641+ 6000 [as in (i)]
or O3 % 156 = 0,3 X 96 = 0,3 % 64 + 1909.9
or 0., = 04103 0+ 12.243
and o’ 3 = 0.6667 0,5+ 19.895
Compatibility equation

O, - O = O + 04~ 20, [as in (ii)]

or 24 - 05 = 041030, + 12.243 + 0.66670, + 19.895 — 2 x 9.846
or 20770, =11.554 or 0©,=556 MPa

Example 1.6 A round steel rod Load
supported in a recess is surrounded 1
by a co-axial brass tube as shown _L | !
in Fig. 1.17. The level of the upper 0.08 mm
end of the rod is 0.08 mm below that T
of the tube. Determine:
(i) the magnitude and direction
of the maximum permissible
axial load which can be
applied to a rigid plate TI7PT77 77777777
resting on the top of the tube. v A 100 mm
The permissible values of 77T
the compressive stresses are _‘__"Imaf_lrl;__,_
105 MPa for steel and 75 e 60 mm |
MPa for brass.
(ii}) the amount by which rhe Fig. 1.17
tube is shortened by a load if the compressive stresses in the steel and the
brass are the same.

Take E, = 210 GPa and Ey, = 105 GPa.

BRASS

STEEL

Solution A, = % x 36" = 3241 mm?

and A, E % (607 — 50%) = 2757 mm?

(i) Let W, be the load applied for the initial compression of the tube before the
compression of the rod starts. Then
_ Gl _ G, x 300
A, = E or (.08 = 105 000

or 0, = 28 MPa and W, = 28 x 27577=24 190 N
But limiting value of stress in the brass =75 MPa
- Maximum value of stress due to additional load can be =75 - 28 = 47 MPa
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Let W be the additional load to compress both, the tube and the bar. Let g, be the
stress induced in the steel rod and @, the additional stress in the brass tube.
Equilibrium equation, 0,.A, + g, 4, = W
Compatibility equation, A, = A,
oL, oL, _ L, E. 300 210 _
m'—EJL = E—b or g,= Z.Eﬂ‘b = I{ﬁ'T{E”" or g,=1.5g,
Therefore the stress induced in the steel rod = 1.5 x 47 = 70.5 MPa
It is less than the permissible value of stress for steel.
Thus W=pA, +p, A, =705 x 324+ 47 x 2757= 112 365 N

Total maximum load = 112 365 +24 190 = 136 555 N or 136.555 kN
(i1) Let A be the shortening of the steel rod. This will also be the additional

shortening of the brass tube. Then A, + A= Op-Lp

E,
or gy = 105 000 (0.08 + A) and o, = 2];]{)0[}{]{}‘&
Equating the stresses in the steel and the brass,
= lﬂ:ﬂi;ﬂﬂ (0.L08+ A) = 210 000 A or 008+A=15A
or 0.5A=008 or A=0.16 mm

Total shortening = 0.08 + 0.16 = 0.24 mm

Example 1.7 Three wires of the same material and cross-section support a rigid
bar which further supports a weight of 5 kN. The length of the wires is 5 m, 8 m and
6 m in order. The spacing between the wires is 2 m and the weight acts at 1.6 m from
the first wire. Determine the load carried by each wire.

Solution  As the wires are of different
lengths and the weight suspended is LLLLL
unsymmetrical, the bar will not remain
horizontal but will be deformed as shown T B
in Fig. 1.18. 6m
Let P,, P, and P, be the loads taken by ™
the first, second and the third wire i
respectively. A | B
Then P, + P;+P;=P=5000 (i) o
Taking moments about the first wire, 16 ':;;N
2P, + 4Py = 1.6 % 5000 = 8000

A
or P,=4000 - 2P, (ii) % B

Also, from symmetry, Fig. 1.18
g. 1.

A My (RL)_RL, RL
2 AE AE  AE

or 2P2[Q=P|L|+P3f.q Qr 2P2X8=F1x5+Paxﬁ

ftt— 2 Tt 2 7]

-
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or 16P, =5P, + 6P,
or 16 (4000 - 2P;) = 5P, +6P; or 64000 -32P,=5P, + 6P,
or 5P, =64 000-38P; or P, =12800-7.6P; (iii)

Inserting the values of P, and P, from (ii) and (iii) in (i),
12 800 - 7.6P; + 4000 — 2P5 + Py= 5000
or 8.6P;=11800 or P;=1372N or 1.372kN
P, =4000-2P; =4000-2x 1372= 256 N or 1.256 kN
P,=12800-76x1372=2373N or 2373kN

Example 1.8 A system of three bars
supports a vertical load P as shown in
Fig. 1.19. The outer bars are identical and
of the same material whereas the inner bar
is of different material. Determine the forces
in the bars of the system.

Solution Owing to symmetry, forces in
the outer bars 1 and 3 will be equal. Let it be
P and the force in the inner bar P, The dotted
]lne'-‘: show the deformed shape Of the system

P
under the load P. Fig. 1.19

From equilibrium equation,
2P, cosB+ P, =P ....(assuming negligible change in 6) (1)
From compatibility equation,

A, = A, cos or AL _ Bl e
AE  AE
or B = %cmﬂ _ AEA(L Cma}cos AL cos’6 (ii)
Ay L ML A E,
Substituting this value of P in (i),
F
EA' tz{.ﬂ'ﬁﬂ +P,=P or Py= SAT
22 I+ = cos’@
ﬁ-f_’-:
From (1), !11[_ i i, cos-f
Ak 14 280 005
AE,
2
= Pcos’6 : = Peos™®

A E, 1+ ZAE, "?’ cos’d ﬁ-& + 2c0s°0
A’l .II.'.*] A‘I 'E’E IAI bl



Simple Stress and Strain

¢

Example 1.9 Figure 1.20 shows a horizontal bar supported by two suspended
vertical wires fixed to a rigid support. A load W is attached to the bar. The left hand
side wire is of copper with a diameter of 5 nun and the right hand side wire is of steel
of 3 mm diameter. The length of both the wires is 4 m initially. Find the position of the

weight on the bar so that both the wires extend by the same amount.

Also, calculate the load, stresses and the elongation of each wire if W = 1000 N,

Neglect the weight of the bar and take E, = 210 GPa and E_ = 120 GPa.
n

PRI TIIIFIIIT SIS

Solution A_= E(5}’ = 6257 mm?

and A, = %(3}2 = 2.257 mm?

Let the load W be placed at a distance x from the E
copper wire and P, and P_ the forces in steel and a
copper wires respectively. 3

Then taking moments about A, 240 P, = W.x e—240 mm-—»=

STEEL

p=X i
=0 @)

A"“E"{

m

4m

Taking moments about B, 240 F.= W(240-x) |

or P.= W.(240-x) (ii) l

240
Dividing (ii) by (i), —~ =
3
As both the wires extend by the same amount, A_= A,

240 - x w
(rir)
Fig. 1.20

or = g .
"1‘(' Er ‘4_! E.i Py A.i‘ E.t

_ 6.257 120 000
T 2.257 210 000

40 - x

= 1.587

From (iii) and (iv), =1.587 or x=9277 mm

Numerical:

W(240 - x) _ 1000x (240 -92.77)

¢ 240 240

_; Wx =iMx92.T?=38&54N
240 240

Fe 61346 31.24 MPa

‘T A 6257
P, 386.54

0= -t=

A, 225%
o..L _ 31.24 %4000
E 120 000

[

q
I

= 54.68 MPa

= 1.04]1 mm

=61346 N

FL _ FL, uri'—'ﬁ E (v Le=Ly)

(iv)
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Example 1.10 Three identical pi:i-connected bars support a load P as shown in
Fig. 1.21. All the bars are of the sam.e area of cross-section and same length. Determine
(i) the force in each bar
(ii) the vertical displacerient of the point
where the load i< applied
Neglect the possibility of lateral
buckling ¢y the bars.

Solution
{1) The dotted lines show the deformed 5
shape of the structure. Assuming that
there is negligible change in the T P,
angles after the deforming of the
bars. AN
Equilibrium equation Fig. 1.21
ZP 1 cos 600 + P 1= .P
or Pi=P-P, (i)
Compatibility equation, A; = A, cos 60°
or —ﬁ-ii=f3£msﬁﬂ° or B=-% (ii)
AE AE 2
From (i) and (ii), i;l =P-5 or 5 ZZTP and P, =P/3
BL 2PL
i) Vertical displacement of the joint, A, = 2= = ———
(it) place e joint, A, \F = 3AE
Example 1.11 A bar system is loaded as shown in Fig. 1.22. Determine
(i) the reaction of the lower support, and (ii) the stresses in the bars.
Take E = 205 GPa
Solution a
(i) When the load is !
applied and the sup- r Fy= 40 kN = R
port touches it, the e R
reactions of both the 80mm?—= (— [|12m l,
supports will be up- }
ward since the load is 40 -
downward. 160 mm? < _L
Let R, = reaction of the
upper support e !
R, = reaction of the T 0.8 mm R
lower support Ao
Then R, + R, = 40 000 .
or R, = 40000 - R, Fig. 1.22

The free-body diagrams of the two portions of the bar system is shown in the
figure. It is clear that the upper portion is in tension whereas the lower portion in
compression.
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BL _ (40 000 - R,) x 1200
AE  80x205000
PL, R, x2400

AE 160 % 205 000

Elongation of the upper portion, 4, =

Shortening of the lower portion, A, =

From compatibility equation,
Elongation of upper portion — shortening of lower portion = net elongation = 0.8 mm
(40 000 — R, ) x 1200 R, x2400
80x 205000  160x 205000
(40 000 — R,) x 15— 15R, = 0.8 x 205 000
or 40000 - 2R, = 10933 or R, =14 533 N
and R, =40000-14 533 =25467T N
(ii) o, = 25 467/80 = 318.3 MPa (tensile)
o, =14 533/160 = 90.8 MPa (compressive)

or 0.8

Example 1.12 A rigid horizontal bar AB hinged at A is supported by a 1.2-m
long steel rod and a 2.4-m long bronze rod, both rigidly fixed at the upper ends (Fig.1.23).
A load of 48 kN is applied at a point 3.2 m from the hinge point A. The areas of cross-
section of the steel and bronze rods are 850 mm? and 650 mm? respectively. Find
(i} stress in each rod (ii) reaction at the pivot point.
E, =205 GPa and E, = 82 GPa

yI7777%
Solution Refer Fig. 1.23.
(i) Let P, and P, be the forces in N
the steel and bronze wires Q
respectively as the load is T Legils @ E
applied. Taking moments 08m 08m |
about the pivot point, 5 | ' ' i 1.6m i |

P, % 800 + P, x 2400 - 48 000 X ~ i
3200 =0 1 @

P,+ 3P, = 192 000 (i) 19 5
From compatibility equation, A fF #P v
8, _80 1 A _8 y P 48N
A, 2400 3 13 4 }
or RL _1ARL As 0

AE, 3 AE,
or F, x1200 =lxw Fig. 1.23
850205000 3 650x82000
P, =2179 P, (i)

From (i) and (ii), 2.179 P, + 3P, = 192 000
or P,=37073N
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P, =192 000 -3 x 37073 =80 781 N

G} = 37073 _ 57.04 MPa and o, = 80781 _ 95.04 MPa
650 850

(ii) The reaction at the pivot can be found from force equation, let it be down-
wards,
P, + P, — R, =48 000
R,=280781+37073-48 000 =69 854 N or 69.854 kN
Thus the assumed direction is correct.

Example 1.13 A rigid bar AB is to be suspended from three steel rods as shown
in Fig. 1.24a. The lengths of the outer rods are 1.5 m each whereas the length of the
middle rod is shortened than these by an amount of 0.8 mm. The area of cross-section
of all the rods is the same and is equal to 1600 mn?. Determine the stresses in the
rods after the assembly of the structure. E = 205 GPa.

B i T

Solution The position of the rigid bar

after the assembly is shown in Fig. 1.245. 1 2 3

It is raised upward by amounts A, A, and ;E
A, at the rod positions 1, 2 and 3 respec- T“E"“““’I""‘a"’ -
tively. Thus the rods 1 and 3 are shortened 0.8 mm_ _L
by amounts A, and A, respectively whereas 2:? ' }3

rod 2 is elongated by an amount (0.8 - A ).

We have, ﬁ = E _‘_L_—L-’i_a’

¢ T'ﬁl T.ﬁz
or M =3 ()
A Fig. 1.24
As LJ:L]:Ag:A,andE_,‘:EI
' Pj_ = 3FI ﬁ)
Also, 4 _2a 08-PL/ AE; _,

or
A a RL 7 AE,
The length of the rod 2 is shorter by 0.8 mm. However, to find the elongation of

the rod, this may be ignored as its effect will be negligible and the length of rod 2 can
be taken equal to that of rod 1.

Thus L,=1L,
Also, Ay=Aad By = E,
08-PL/AE _, = O08xAE A _,
BL/AE, AL R
o 08x1600x205000 B _, o 174933-p,=2P,
P, % 1500 A
or EF] +P2 = 174 933 “i)

Taking moments about A, P\.a + Py.3a=P,.2a
or Py +3P;=2P, (iii)
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Solving (1), (i1) and (iii),
From (i) and (iii), P, + 3 x 3P, =2P, or P,=5P, (iv)
From (ii) and (iv), 2P, + 5P, =174 933 or P,=24990N
P,=24990x5=124952 N
P;=24990%x3=74971 N
o, = 24 990/1600 = 15.62 MPa (compressive)
0, = 15,62 x 5 = 78.1 MPa (tensile)
0 = 15.62 x 3 = 46,86 MPa (compressive)

1.12 TEMPERATURE STRESSES

The length of a material which undergoes a change in temperature also changes and
if the material is frec to do so, no stresses are developed in the material. However, if
the material is constrained, stresses are developed in the material which are known as
temperature siresses.

Consider a bar of length L. If its temperature is increased through r°, its length is
increased by an amount L.¢c.t, where « is the coefficient of thermal expansion. But if
the bar is constrained and is prevented from expansion, the temperature stress is induced
in the material which is given by

E= lemperature stress = O
"~ temperature strain " LarlL
or o=atk (1.14)
or o= 0ot olE
or  lemperature strain, £ = o.¢ (1.15)

Compound Sections

Consider a copper rod enclosed in a steel tube as shown in Fig. 1.25 rigidly joined at
each end. Now, if the temperature is INITIAL FINAL
pored by e compr i veld pBgon— s
tube. As the two are joined together, the ”””’f’{’”{”f’f’f .
copper is prevented its full expansion COPPER :
and is put in compression. The final |
position of the compound bar will be as 777 7777
shown in the figure. =
Let o, = tensile stress in steel i +
O, = compressive stress in copper
A, = cross-sectional area of Fig. 1.25
steel tube
A_ = cross-sectional area of copper rod
From equilibrium equation
Tensile force in steel = compressive force in copper

STEEL POSITION IF FREE
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O.A,=0.A, (1.16)
or E.E.A =€ .E_ A,
Compatibility equation:
Let o, = coefficient of thermal expansion in steel

o, = coefficient of thermal expansion in copper

Now Elongation of steel tube (due to temperature + due to tensile stress)

= Elongation of copper rod (due to temperature — due to compressive stress)
or Temperature strain of steel + tensile strain

= Temperature strain of copper — compressive strain
s+ UJEx = ﬂ!,J - EJEr

or al+E = 01—E,
or E+E =(0, —aM (1.17)
Equations (1.16) and (1.17) are sufficient to solve the problems.

Example 1.14 Tivo parallel walls 8 m apart are to be stayed together by a
steel rod of 30-mm diameter with the help of washers and nuts at the ends. The
steel rod is passed through the metal plates and is heated. When its temperature
is raised 1o Y90°C, the nuts are tightened. Determine the pull in the bar when it is
cooled to 24 C if
(i) the ends do not yield (ii) the rotal vielding at the ends is 2 mm.
E = 205 GPa and coefficient of thermal expansion of steel, ¢, = 11 x 10-°PC.

Solution

1l

A %(30}2 =225 mm?

(i) Pullinthe bar, P=0.A =atEA
=11 x 1079 % (90 — 24) x 205 000 x 225 7= 105202 N

(i) When the yield at the ends is 2 mm,
A=(alt-2)= PL
AE

2 3
or P=arAE- :'% 105 202 - 2X 225X 205 000 _ o nnn 36207

8000
=68975N or 68.975kN

Example 1.15 A composite bar made up of copper, steel and brass is rigidly
attached to the end supports as shown in Fig. 1.26. Determine the stresses in the
three portions of the bar when the temperature of the composite system is raised by
70°C when

(i) the supports are rigid (ii) the supports vield by 0.6 mm.

E, = 100 GPa; E, = 205 GPa; E, = 95 GPa
o, = 18 x 10-5°C; &, = 1] x 10-%7°C; e, = 19 x 10-PC
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Solution
A, = (m/4)50° = 625 mmm?;
A = (m/4)40% = 400 w mm?; A= (7/4)60° = 900 7 mm?
(i) When the temperature is RASS
raised, each portion tends to CDTEH STEEL l

elongate which is resisted by —— !
he rigid : ] h E 1 [ L | E
the rigid ?upporta and the € 3 40 mm C |E
compressive stresses are |2 J 1 F g
developed in each portion. : C
However, the forces so e} 600 mm ——s}«—»
developed in each portion are 300 mm 200 mm
equal, Fig. 1.26
. A, 900
e OA=0A=0,4, or O.=—0,= x o, =1.440
o le et bt (s A‘. & 6251 b b
I
and = 2o =2 5 — 2950,
400

Elongation in the absence of supports, A=A_+ A, + A,
=a. L.t +o L +o,L, 1
= 18x 1078 x300x 70 + 11 x 107° x 600 x 70 + 19 x 1075 x 200 x 70
=70 x 10~% (5400 + 6600 + 3800) = 1.106 mm

ﬂ-l."l‘f + ﬂ-.TL.!: +Jb£f?

Also from stress considerations, A =

c E, E,
1440, x 300 2.250, x600 o), x 200
Thus, 100000 205000  9soo0 - 108
or (0.004 32 + 0.006 59 + 0.002 11) g, = 1.106

0.01302 g, = 1.106

o, = 84.95 MPa

G.= 8495 x .44 = 122.33 MPa
o, = 84.95 x 2.25 = 191.13 MPa

(ii) When the supports yield by 0.6 mm,
0.0132 g, = 1.106 - 0.6 = 0.506

o, = 38.33 MPa

o, = 38.33 x 1.44 = 55.20 MPa
o, = 38.33 x 2.25 = 86.24 MPa

Example 1.16 A sieel tube of 35-mm outer diameter and 30-mm inner diameter

encloses a gun metal rod of 25-mm diameter and is rigidly joined at each end. If at a

temperature of 40°C there is no longitudinal siress, determine the stresses developed

in the rod and the ribe when the temperature of the assembly is raised to 240°C.
Coefficient of thermal expansion of steel = 11 x 107° /°C.



Coefficient of thermal expansion of gun metal = 18 x 10-°/°C.

Young s modulus for steel = 205 GPa

Young s modulus for gun metal = 91.5 GPa

Also find the increase in length if the original length of the assembly is 1 m.

Solution Refer Fig. 1.27,

T } VIV
A= —(357 -30%)=25525mm? g fg E
4 gEg E GUN METAL 1{3‘
_n 2 _ 2 o 0
and AR.-EXES = 490.87 mm ) S 77
As the coefficient of expansion of STEEL
the gun metal is more as compared
to that of steel, the final expansion Fig. 1.27

will be less than the free expansion
of gun metal due to temperature rise and thus compressive stresses will be developed
in the gun metal rod. In a similar way, as the coefficient of expansion of the steel is
less, the final expansion will be more than the free expansion of steel due to temperature
rise and thus it will have tensile stresses.
Temperature strain of steel + tensile strain
= Temperature strain of copper — compressive strain

(2] )
ie. ot + f:;_ = t-—% or ap+ P =0t - !
E, E, A.E, AE,
0 P ! + l = o, —o,)
' AE, AE, | f "
o, —o - - —6
or P : o ;) _ .;24:1 40)(18 ll}:n:l[l}
+ +
AE, AE,  25525%x205000 490.87 x91 500
-
- 140010 ~=33841 N
19.11x107% +22.26x10”
33841 33 841
0,= —— =132.6 MPaand 0,= = 68.94 MPa
' 25525 § 490.87

Increase in length of assembly

= Elongation of steel tube (due to temperature + due to tensile stress)

= Elongation of copper rod (due to temperature — due to compressive stress)
Using the first equation, Increase in length

a,Lr+J‘L=L ﬂcj.e‘+ﬂ
E E

5

Il

.1

lﬂ{]ﬂ[l 1 x107% x 200 + 2132'6

= 2.847 mm
05 000
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Example 1.17 Rails are laid such that there is no stress in them at 24° C. If the

rails are 32-m long, determine
(i) the siress in the rails at 80°C, when there is no allowance for expansion.
(ii) the stress in the rails at 80°C, when there is an expansion allowance of 8 mm
per rail.
(iii) The expansion allowance for no stress in the rails at 80°C.
(iv) The maximum temperature for no stress in the rails when expansion allowance
is 8 mm.
Coefficient of linear expansion, a = 11 x 10~°/°C and E = 205 GPa

Solution Change in temperature = 80° — 24° = 56°
(i) When there is no allowance for expansion,
o=atE=11x10"%x56 x 205 000 = 126.28 MPa

(i1) When there is an expansion allowance of Smm, A=aLt-8= J—;
or llxlﬂ"ﬁx32m0x56—8=—ng2mﬂ
205 000
or 19.712 -8 =0.1561 ¢ or o=75.03 MPa
(iii) If stresses are to be zero, the expansion allowance
A=alLr=11x10"%x32 000 x 56 =19.71 mm
(iv) For no stress in the rails when expansion allowance is 8 mm.
8 =alLt
or 8=11x10"°x32000x1 or 1=2273C

Example 1.18 A steel rod of 16-mm diameter and 3-m length passes through a
copper tube of 50-mm external and 40-mm internal diameter and of the same length.
The tube is closed at each end with the help of 30 mm thick steel plates which are
tightened by nuts till the length of the copper tube is reduced by 0.6 mm. The
temperature of the whole assembly is then raised by 56°C. Determine the stresses in
the steel and copper before and after the rise of temperature. Assume that the thickness

of the steel plates at the ends do not change during tightening of the nuts.

COPPER
T P I I I TIIITIIIIIIIIS.
F 3
E |E 116 mm STEEL
3 19
j: YT T I I T T T IIITITS.
B s
Fig. 1.28

E =210 GPa; E_= 100 GPa;
o, = 12 x10°°°C; a, = 17 x 10°%/°C
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Solution  Refer Fig. 1.28.
A, = (m/4)167 = 64 Tmm?;
A, = (m/4) [50? - 40°] = 225 & mm?
Stresses due to tightening of the nuts

_oL | 6= g, %3000 - :
As A= E A 100 000 or o,.=20MPa(compressive)
and as the force in the rod and the tube is the same, 0,.A, = g,. A,
or O, x04r=20x225 1 or o,=70.3 MPa (tensile)

Stresses due to temperature rise

As the coefficient of expansion of copper is more than that of steel, it expands
more. Thus compressive stress is induced in the copper tube and tensile in the steel
rod.

As ag,.A, = 0..A,

5 o, = (A /A,) 0.=(225/64) 0. =3.516 g,

Now, from compatibility equation,

Temperature strain of steel + tensile strain of steel

= Temperature strain of copper — compressive strain of copper

i ol c.lL.
e oJdg+—= = P—-—
Le f _E_‘., fl‘(‘ Er
. 3
12 5107 x (3000 + 60) x 56 + S0 Oc X 3060
210 000
17107 x 3000 x 56 — 2 X 3000
100 000
or 2.056 +0.051c. = 2.856 - 0.03 g,
or 0081 g.=08 or o.=987MPa

and 0, = 3516 % 0, = 3.516 x 9.87 = 34.7 MPa

Final stresses
o, = 20 + 9.87 = 29.87 MPa (compressive )

and g, = 70.3 + 34.6 = 104.9 MPa (tensile)

Example 1.19 A steel rod of 30-mm diameter is enclosed in a brass tube of
42-mm external diameter and 32-mm internal diameter. Each is 360 mm long and the
assembly is rigidly held between two stops 360 mum apart. The tempe rature of the
assembly is then raised by 5(00C. Determine
(i) stresses in the tube and the rod
(ii) stresses in the tube and the rod if the stops yvields by 0.15 mm
(iif) vield of the stops if the force at the stops is limited to 60 kN
E, =205 GPa; E, =90 GPa: e, = 11 x107%°C; o, = 19 x 10-%°C

Solution  Refer Fig. 1.29.
A, =(m/4) 30° = 225 r mm?;



E— E

A,= (1/4) [42% - 32 i BRASS 1
2 PP TP Frrr I rIrrsy. T
= 185 mm a Fe &
I 3
(i) When the temperature is O 130 mm STEEL EE
raised by 50°, % "mi
Stress inthe steel rod =, 1 E, || /f/fff//fjffj////;_§
=11 x 107 x 50 x 205 000 fe———360mm————+ »
= 112.75 MPa (compressive) Fig. 1.29

Stress in the brass tube = ¢, 1 E, = 19 x 10~ x 50 x 90 000
= 85.5 MPa (compressive )

(ii) If the stops yields by 0.15 mm, A, = (L - 0.15) = 5=
¥
o 6. = ek, PU5Ee _ j 15 015X 205 000
L 360
= 112.75 - 85.42 = 27.33 MPa (compressive)
and A=(a,Lt - 0.15) = 2tk
E,
or O = OtE, - 0I5B, _gs5- ﬂls:%

= 85.5 - 37.5 = 48 MPa (compressive)
(iii) When the force at the stops is limited to 60 kN, let the yield of the stops be §,

Then ﬂ$={a_-,-LI"5)= a;L
ES’
or 6, = auE, - 2B —112.95- OX205000 1) 75 569.44 5
360

and A, = (oLt - 8) = HL;

A N e L
. 0= aurk, - O _gs.5_ 590 000

L 360

=855-25045

Now, Force exerted by steel rod + Force exerted by brass tube = total force on the stops
agA, + 0, A, =P
(112,75 - 569.44 §) x 225 m+ (85.5 — 250 &) x 185 7w =60 000
79 698 — 402 513 & + 49 692 — 145 299 5= 60 000
547 812 6= 69 390
§=0.127 mm

Example 1.20 A rigid biock AB weighing 180 kN is supported by three rods
symmetrically placed as shown in Fig. 1.30. Before attaching the weight, the lower
ends of the rods are set at the same level. The areas of cross-section of the steel and
copper rods are 800 mnr® and 1350 mm® respectively. Determine
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(i) the stresses in the rods, if the temperature e
is raised by 25°

(ii) the siresses in the rods, if the temperature  +«
is raised by 50°

(iii) the temperature rixe for no stress in the
copper rod.

E.=95GPa; a,= I8 X 107%°C; s
E, =205 GPa; &, = 1I x 10-%°C l

Solution Considering the increase in tempe-
rature alone (neglecting the weight of the block),
the elongation of copper rod is more as compared Fig. 1.30

to steel rods. On the other hand, if the

temperature does not change, there is elongation of all rods and there is tensile stress
in all the rods.

Total elongation of each rod is the sum of elongations due to temperature and due
to weight. As the block is rigid, it will remain horizontal under all conditions. Thus
the total elongation of each rod is the same.

(1) Assume the stress in the copper rod to be compressive, i.e. the force acting

160 kN

upwards.
PL, PL
Th alt+ — = li—-——
o JLI AS 'E..f ‘ i‘cf ‘4T'El.'
11 x 107° x1200x 25 + F, x1200
800 x 205 000
18107 x 1800 x 25 — e <1800
1350 x 95 000
330 000 + 7.317P, = 810 000 - 14.035P,
P, =65601-1918P, (i)
From equilibrium equation
2P, - P.= 180000
or P - 0.5P. =90 000
65 601 - 1.918P, - 0.5P,. = 90 000 [from (i)]
or 2418 P.=-24 399
or P, =-=10090 N (compressive)
and P, = 90 000 + 0.5 x (- 10 090) = 84 955 (tensile)
o, =- 10 090 _ _ 5474 MPa
1350

This shows that the stress in the copper rod is opposite of what was assumed i.e.
tensile and not compressive.

84 955
g =

]

= 106.19 MPa (tensile)
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(i1) If the temperature is raised by 50°,
11x10™° x1200x50 + 7.317x10°° P,

= 18x107® x1800% 50 - 14.035x10°° P.
660 000 + 7.317 P,=1 620 000 - 14.035 P,
P,=131201-1918 P,
From equilibrium equation
2P, - P.=180000 or P,-0.5P.=90000
or 131201 -1.918 P, =90 000
or P, =17 039 N (compressive)
o, = 17 039/1350 = 12.62 MPa (compressive)
P, =90000+05x17039=98520N
o, = 98 520/800 = 123.1 MPa (tensile)

(iif) As there is to be no stress and hence no load on the copper rod, g, =0
Hence load in each rod = 180 000/2 = 90 000 N

11x107° x1200x ¢ + 7.317x107°P,

= 18x107% x1800x¢ -0
13200 ¢ + 7.317 P, = 32 400«
19 200 1 = 7.317 x 90 000
1=343°

1,13 SHRINKING ON

A thin tyre of steel or of any other metal can be shrunk on :
to wheels of slightly larger diameter by heating the tyre to a
certain degree which increases its diameter. When the tyre
has been mounted and the temperature falls to the normal
temperature, the steel tyre tends to come to its original
diameter and thus tensile (hoop) stress is set up in the
tangential direction.

As shown in Fig. 1.31, let d and D be the diameters of
the steel tyre and of the wheel on which the steel tyre is to
be mounted (Fig. 1.31), then

aD-nd D-d
E= ==

The strain,
d o

Circumferential tensile stress or hoop stress = £.E = (M]E (1.18)

Example 1.21 A thin tyre of steel is to be mounted on to a rigid wheel of 1.2-m
diameter. Determine the internal diameter of the tyre if the hoop stress is limited to
120 MPa.
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Also determine the least temperature to which the tyre should be heated so that it

can be slipped on 10 the wheel.
E,=210GPaand a, = 11 x 107°C

Solution
Tensile strain, £ = xD —#d = D-d (&
md d E
D o o+ E d E
or — == |+1= —_—=
d E E D o+E
DE 1200 x 210 000
or d = = 119931 mmor 1.19931 m

T o+ E 120+210 000
Increase in the circumferential length = 7 (D-d)

Thus aLt=mx(D-d)
or 11 x 107 x (mx 1199.31) x 1 = (1200 - 1199.31)
1=523C

1,14 STRAIN ANALYSIS

So far, the effect of an axial force on the length of a bar or rod has been considered. In
case of a tensile force, the length increases, and in a compressive force, it decreases.
However, this axial increase or decrease takes place at the cost of a change in the
lateral dimensions of the bar or rod. If an axial tensile force is applied to a bar, its length
is increased and its lateral dimensions i.e. the
width and breadth or the diameter are
decreased (Fig. 1.32). Therefore, any direct
stress produces a strain in its own direction
as well as an opposite kind of strain in all Fig.1.32
directions at right angles to its own direction.

]

IF el o o m m —+h-ﬂ‘
1
et 1-1

Poisson’s Ratio
The ratio of the lateral strain to the longitudinal strain of a material, when it is subjected
to a longitudinal stress, is known as Poisson’s ratio and is denoted by v. It is found
that for elastic materials, the lateral strain is proportional to the longitudinal strain i.e,
the ratio of the iateral strain to the longitudinal strain 1s constant, Thus
Lateral strain
Longitudinal strain

The value of v lies between (.25 and 0.34 for most of the metals.

Lateral strain = — v X Longitudinal strain = - v, o/E

(negative sign indicates that it is opposite to the longitudinal strain)

= constant = v (1.19)

Two-Dimensional Stress System
Consider a system with two pure normal stresses &, and &, as shown in Fig. 1.33.
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Strain due to g, in its own direction

S

=0,/E
Strain due to @, in the direction of
o, =-Vvo,/E
Thus, net strain in the direction of &,
£ = 0)/E-vay/E (1.20)

Oy —a—

| bl

In a similar way,
Net strain in the direction of &,
& = 0,/E - vo/E (1.21)
Remember that a tensile stress is taken positive
whereas a compressive stress negative.

Three-Dimensional Stress System

Let there be a system with three pure normal stresses
0,, 0> and &, as shown in Fig. 1.34,

Strain due to o, in its own direction = g/E
Strain due to @, in the direction of o, = — vo,/E
Strain due to @, in the direction of g, = — va,/E
Thus, the net strain in the direction of g,

€ = 6|/E = va,lE - vay/E
In a similar way, &= 0¥E - vay/E - vag,/E
and &= 0/E - volE - vo /E

Volumetric Strain

oz

i

o2
Fig. 1.33

o
b

Fig. 1.34

Volumetric strain is defined as the ratio of increase in volume of a body to its original
volume when it is acted upon by three mutually perpendicular stresses @, &,, and 0;.
For a rectangular solid body of sides a, b and ¢ (Fig. 1.34), let &, & and & be the

corresponding strains.
Initial volume = a.b.c

Final volume = (a + ag)) (b + bg,) (c + c&)=abc (1 + £) (1 + &) (1 + &)

Increase in volume
Original volume

Volumetric strain =

_abe (1+¢)(1+&,)(1 + &) — abe
a abe
=(l+e)(1+&)(1+&)-1

=1+ 6+ E+E+EE+ EE+ EE+ 56—

=E + &+ &

(1.22)

Thus if the products of very small quantities are neglected, the volumetric strain is

the algebraic s1:m of the three mutually perpendicular strains.

In terms «! ~tresses the volumetric strain can be expressed by substituting the

values of g, & znd £, from above.
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Volumetric strain,

V "
%— =(0\/E - vO./E — voy/E) + (05/E — voy/E — vO/E)

+ (6/E - vo,/E - va,/E)
(0, +0,+0,)(1-2v)

z (1.23)
and Change in volume =V x (0, + 0 +E63)U = 2v) (1.24)
If force is unidirectional, i.e. 0, and oy are zero,
Volumetric strain = Eﬂ:é@ =g(l-2v)
Change in volume = V x %ﬁw =V.gl-2v) (1.25)

Example 1.22 What will be the change in the volume of a steel bar of 20-mm
diameter and 600-mm length when a tensile stress of 180 MPa is applied 1o it along
its longitudinal axis?

E =205GPa, v=103

Solution
Volume of the bar, V = -Ex 20% x 600 = 60 000 £ mm®
. ol -2v) 180(1 - 2x0.3)
Cha | =V —— =60 000 =662 3
nge in volume g X 205 OO0 mm

66.2
Percent hange in volume = ———— x 100 =0.035
4ge CNange in ume 60 M)JI

Example 1.23 The tangential (hoop) and longitudinal stresses in the plates of a
cylindrical boiler of 2.2-m diameter and 3.5-m length are 90 MPa and 45 MPa
respectively. Determine the increase in its internal capacity. Neglect compressive

stress due to steam on the inner surface.
E = 205 GPa; v=1023

Sozlution
a. = 90 MPa; g, =45 MPa
V= (m4)2.2*x3.5=4.235 m?
As compressive stress due to steam on the inner surface is neglected, o, =0
g = 6/E—vo /E = (1/E)(90 - 0.3 x 45) = 76.5/E
£, = o/E - vo /E=(1/E)45-0.3 x90) = 18/E
The diameter of a boiler is directly proportional to its circumference. Thus g, also
is the diametrical strain along any two perpendicular radii.
Volumetric strain, £ = E+ E +E,
= 18/E + 76.5/E +76.5/E
= 1717205 000 = 834.1 x 10-°
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As strain is a ratio, change in volume can be found directly in m”.

Change in volume = £x V= (834.1 x 10%) x 4.235 £=0.011 098 m*
= (0.011 098 x 1000) I = 11.098 {

Example 1.24 A sieel bar 35 mm X 35 mm in section and 100 mm long is acted
upon by a tensile load of 180 kN along its longitudinal axis and 400 kN and 300 kN
along the axes of the lateral surfaces. Determine
(i} change in the dimensions of the bar (ii) change in volume
(iii) longitudinal axial load acting alone to produce the same longitudinal strain
as in (i).

E = 205 GPa; v=03

Solution Let o,, 0, and o, be the stresses along longitudinal and two transverse
axes respectively.

(i) o, = 130 000 _ 146.9 MPa
35 % 35

o, = 00 000 _ 114.3 MPa
100 x 35

o, = LLUALLL = 85.7 MPa
100 x 35

In longitudinal direction,
AL = é(o’, - V@, — VO,)

_ 100
~ 205 000
In the direction of 400 kN load,

(1469 -03x 1143 -03 x85.7) =0.042 39 mm

AL = %{{Tg—vﬂ] - VO3)

= 205 000 (114.3-0.3 x 146.9 - 0.3 x 85.7) = 0.0076 mm

In the direction of 300 kN load,

L
- _E" {U}" Vﬂl - V{Iz)

(85.7-0.3 x 146.9 - 0.3 x 114.3) = 0.001 25 mm

= 205 000
(ii) Change in volume = (100 + 0.042 39) (35 + 0.0076)(35 + 0.001 25) - 100x35x 35
=82.92 mm®
or Change in volume = V x (0, + 03 +;'3){1 — %)
(1469 +114.3+85.7)1—-2x0.3)

= (100 x 35 x 35)
= 8292 mm’

205 000
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(it1) Let obe the longitudinal stress to have the same strain,

E_g_n.mzag_ o
T L T 100 ~ 205000°
Longitudinal load = o' x A = 86.9 % 35 x 35 = 106 452 N or 106.452 kN

o= 86.9 MPa

Example 1.25 A square steel bar of dimensions 50 mm x 50 mm x 150 mm is
subjected to an axial load of 250 kN. Determine the decrease in length of the bar if
(i) the lateral strain is fully prevented by applying external uniform pressure on
the rectangular surfaces.
(ii} only one-third of the lateral strain is prevented by the external pressure.

Solution
(i) o, = 250 000/(50 x 50) = 100 MPa
Let the compressive stresses applied on the similar lateral 250 kN
sides be o, (= ;) to prevent the lateral strain (Fig. 1.35). l
Then
(0= Vo= v0) =0 e
or (03-03x0,-03x100)=0 .. .(G=0y)
or 0.7 oy =30
0, = 42.857 MPa Trermrerene
) L Fig. 1.35
Decrease in length = E[crl - VG, - Va3) =0
150
= Znsmﬂtlﬂﬂ—ﬂ,Bxeﬂ.BjT}:ﬂ G =03)
= 0,054 36 mm

(ii) In the absence of compressive stresses on the sides to prevent the lateral strain,
The lateral strain = vo,/E (tensile)

Now, one-third of this is to be prevented i.e. vo,/3E and leaving 2va,/3E as such.
Let the compressive stresses applied on the sides be &,.

Then
1 v,
— (0, = VO, = VO|) = = ——
g %27 YR vo) == g
The two strains are of opposite directions.
or (0, -03 % 0, - 03 x100) =-2x0.3 % 100/3 (o2=0y)
or 0.7 o, = 30 - 20

g, = 14.286 MPa
Decrease in length = %[m:rI - V0, - voy) =0

150
~ 205 000

= (.0669 mm

(100 - 0.3 x 2 x 14.286) = 0 (6,=03)




The behaviour of a ductile material, such as steel,
subjected to an increased tensile load is studied
by testing a specimen in a tensile testing
machine. The plot between strain and the
corresponding stress is represented graphically

by a tensile test diagram. Figure 1.36 showsa @ P: Proportional limit
stress vs. strain diagram for steel in which the X E. Elastic limit
tress is calculated on the basis of original & b
stress is calculated on the basis of original area & U: Ultimate strength
of a steel bar. Most of the other engineering R: Rupture strength
materials show a similar pattern to a varying

degree. The following are the salient features of STRAIN

the diagrﬂm: Fig. 1.36

When the load is increased gradually, the

strain is proportional to load or stress upto a certain value. Line OP indicates
this range and is known as the line of proportionality. Hooke's law is applicable
in this range. The stress at the end point P is known as the proportional limit.
If the load is increased beyond the limit of proportionality, the elongation is found
to be more rapid, though the material may still be in the elastic state, i.e. on
removing the load, the strain vanishes. The point E depicts the elastic limit. Hooke'’s
law cannot be applied in this range as the strain is not proportional to stress.
Usually, this point is very near to P and many times the difference between P and
E is ignored and therefore elastic limit is taken as the limit of proportionality.
When the load is further increased, plastic deformation occurs i.e. on removing
the load, the strain is not fully recoverable. At point ¥, metal shows an appreciable
strain even without further increasing the load. Actually, the curve drops slightly
at this point to ¥’ and the yielding goes upto point Y. The points ¥’ and ¥’ are
known as the upper and lower yield points respectively. The stress-strain curve
between Y and Y is not steady.

After the yield point, further straining is possible only by increasing the load.
The stress strain curve rises upto point U, the strain in the region Y to U/ 15 about
100 times that from O to ¥’. The stress value at I/ is known as the ultimate
stress and is mostly plastic which is not recoverable.

If the bar is stressed further, it begins to form a neck or a local reduction in cross-
section occurs. After this, somewhat lower loads are sufficient to keep the specimen
elongating further. Ultimately, the specimen fractures at point K.

If the load is divided by the original area of the cross-section, the stress is
known as the nominal siress. This is lesser at the rupture load than at the
maximum load. However, the stress obtained by dividing with the reduced area
of cross-section 1s known as the actual or true stress and 1s greater at the
maximum load. It is shown in the figure by the dotted line.

For more information refer to section 18.3.
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1.16 FACTOR OF SAFETY .

A machine component must be designed so that the load carried by it under normal
conditions of utilisation is considerably below its ultimate load. This smaller load is
referred as the allowable load or the design load or the working load. Usually, the
allowable load is only a fraction of the ultimate load or the load carrying capacity of
a component. This is done to ensure safe working of the component against
uncertainties of various factors during the operation of a machine, e.g.,
homogeneousness of the material, number of loadings during the life of component,
type of loading (static or sudden), method of analysis used, natural causes, etc. Thus
a large portion of the load carrying capacity of the component is kept as reserve for
safe performance of the component. The ratio of the ultimate load to the allowable or
working load is known as factor of safety. Thus
ultimate load

allowable load
As the stress is the load per unit area, factor of safety is also defined as,

Factor of safety =

ultimate stress

Factor of safety = -
y allowable stress

s Refer section 18.3 also.

1.17 ELASTIC CONSTANTS

The factors to determine the deformations produced by a stress system acting on a
material within elastic limits are constant and termed as elastic constants. Two elastic
constants Modulus of Elasticity and Modulus of Rigidity have already been defined in
section 1.5. A third elastic constant is being defined in p

this section.

If three mutually perpendicular stresses of equal
intensity are applied to a body of initial volume V as
shown in Fig. 1.37, then the ratio of the direct stress to
the volumetric strain is known as the bulk modulus (K)
of the body.

Usually, bulk modulus is applicable mainly to fluid
problems with pressure intensity p in all directions and
thus Fig. 1.37

Direct stress  —p
Volumetric strain £

(1.26)

¥

Volumetric strain, €, = (0, +0, +EG3}U il (Eq. 1.23)

For three perpendicular stresses of equal intensity p (compressive),

. = 30=2v)(=p)
v E
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-P
Th , =
erefore K A= 2v)p/E
or E = 3K(1-2v) (1.27)

1.18 RELATION BETWEEN ELASTIC CONSTANTS

Consider a square element ABCD under the action of a simple shear stress 7(Fig.1.38a).
The resultant distortion of the element is shown in Fig. 1.38b. The total change in the
corner angles is = ¢ . However, for convenience sake, side AB may be considered to
be fixed as shown in Fig. 1.38¢. As angle ¢ is extremely small, CC" and DD’ can be
assumed to be arcs, Let CE be a perpendicular on the diagonal AC”.

Linear strain of the diagonal AC can approximately be taken as
AC'-AC EC'  CC'cosd5° _ @.BCcos*45° _9

=7 AC  AC  ABkos4s® BC 2
(CC’" = @.BC and AB = BC)
But Modulus of rigidity,G = t/por p= 7G (Eq.1.5)
T .
£= — i
G (i)
It will be shown in section 2.2 that in a state of simple p c
shear on two perpendicular planes, the planes at 45° are
subjected to a tensile stress (magnitude equal to that of he T T
shear stress) while the planes at 135° are subjected to a
compressive stress of the same magnitude with no shear stress v T
on these planes. Thus planes AC and BD are subjected to A 5

tensile and compressive stresses respectively each equal to
T in magnitude as shown in Fig. 1.39. Fig.1.39
Hence linear strain of diagonal AC is

T vT T
£ £ [ E) E( ) (1)
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From (i) and (ii),

T,
26 - Y
or E=2G(1+v)
As E =3K(l -2v) .(Eq. 1.27)
E=2G(1+v)=3K(1-2v) (1.28)
This equation relates the elastic constants.
Also from above, 1 + v= i 2+2v=£ (1)
2G G
and 1-2v= E% (ii)
Adding (i) and (ii), 3 = E l+l =i(3x +G)
8 T 7l 6 3Kk 3KG
9KG
= 1.29
or 3K +G (129

Example 1.26 A bar, 24 mm in diameter and 400 mm in length, is acted upon by
an axial load of 38 kN. The elongation of the bar and the change in diameter are
measured as 0.165 mm and 0.0031 mm respectively. Determine

(i) Poisson’s ratio, and (ii) the values of the three moduli

Solution
A = (m4) 24* = 144 £ mm?
o= 38 000/144 n =84 MPa
Lateral strain = v .Linear strain

od SL 0.0031  0.165
—=v— =v

or or v=0313
d 3 24 00
E= E=L = 203 636 MPa
£ 0.165/400
Also, E=2G(l1+v)=3K(l-2v)
E 203 636

o = = = 4

C= 20+v) 21+0313) >0 MPa
and E 203636 _ 151 494 MPa

T 31-2v) 3(1-2x0313)

Example 1.27 A bar, 12 mm in diameter, is acted upon by an axial load of 20 kN.
The change in diameter is measured as 0.003 mm. Determine

(i) Poisson’s ratio and (i) the modulus of elasticity and the bulk modulus.
The value of the modulus of rigidity is 80 GPa.

Solution
A = (1/4) 12?2 = 36 mmm?
o= 20 000/36 r = 176.84 MPa
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Lateral strain = v . Linear strain

%:v& or %:w—: or £=0.000 25/v (i)
Now, E=2G(1+vW=2x80000(1 + v)= 160000 + 160 000 v
g 176.84 c
Also, E= = 0000 25/v = 707 360 v [using (i)]
707 360 v = 160 000 + 160 000 v
v=102923
Thus E =707 360 % 0.2923 = 206 771 MPa
and E 206 771 = 165921 MPa

K= =
3(1=-2v) 3(1-2x0.2923)

Summary

o The resisting force per unit area of cross-section of a body is known as intensity
of stress or simply stress.

o Shear stress exists on two parts of a body when two equal and opposite parallel
forces, not in the same line, act and one part tends to slide over or shear from
the other across any section.

¢ The elongation per unit length of a body is known as strain. It is dimensionless.

e Shear strain is the change in the right angle of a rectangular element measured
in radians and is dimensionless.

¢ The ratio of stress to strain is constant within elastic limits and is known as
Young s Modulus or the Modulus of Elasticity. It is denoted by E and E = g /¢.

o Modulus of rigidity or shear modulus denoted by G is the ratio of shear stress to
shear strain i.e. G = /.

¢ The materials in which strain is proportional to stress are said to obey the Hook's
law.

* Elongation of a bar of length L is given by, A = PLIAE

¢ The principle of superposition states that if a body is acted upon by a number of
loads, then the net effect on the body is the sum of the effects caused by each
load acting independently.

¢ [ncrease in length due to temperature rise = L.o¢.t

¢ Temperature stress is givenby o=t E

* For elastic materials, the ratio of lateral strain to longitudinal strain is constant
and is known as Poisson’s ratio (V).

o Volumetric strain is the ratio of increase in volume of a body to its original
volume when it is acted upon by three mutually perpendicular stresses.

E

* Volumetric strain = =£ + &+ 6,
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* Factor of safety =

ultimate load ultimate stress
or
allowable load allowable stress

» Relation between various elasticity constants of a material is

-

[

-

DUk

13.
14.
15.
16.

17.

125 kN={ |20 [l10] [15 | }10| |15 ‘1ﬂ| 15
L

E=2G(1+ v =3K(1-2 V)

Review Questions

What do you mean by tensile, compressive and shear forces? Give examples.
What is stress? In what way does shear stress differ from direct stress?
Explain.

What is complimentary shear stress? What is its significance?

Explain the terms: strain, shear strain, Young’s modulus and modulus of rigidity.
Define the principle of superposition. What is its utility?

Deduce expressions to determine the elongation of

(i) a bar of tapering section, and

(i1) a trapezoidal section of uniform thickness.

Find an expression for elongation of a bar of rectangular section and a conical
section due to self-weight.

What is meant by a column of uniform strength? How is its area of cross-
section along its length related to that at the top?

What are compound bars? What are equilibrium and compatibility equations?
What do you mean by temperature stresses? Explain.

. Define the term Poisson's ratio. Write the expressions for strains in the three

principal directions.

. What is volumetric strain? Show that it is the algebraic sum of three mutually

perpendicular strains.

Plot a tensile test diagram for steel. Explain its salient features.

Define the term factor of safety and its importance.

Define bulk modulus. Deduce the relation E = 3K(1- 2v).

Derive arelation between Young’s modulus, modulus of rigidity and Poisson’s
ratio.

A rod as shown in Fig. 1.40 is subjected to a tensile force of 125 kN. Determine
the elongation of the rod. E = 205 GPa. (0.7 mm)

ti01 |20 |=125kN
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18. The loading on a steel bar of 30-mm diameter is as shown in Fig. 1.41. Find

19.

21.

22.

the elongation of the bar. £ = 205 GPa. {0.224 mm)
40 kN —=— ~—=10 kN zukN-—;' = 50 kN
je——sje—— 550 mm -y -
150 mm 200 mm
Fig. 1.41
Determine the total compression 50 kN
of the bar of Fig. 1.42. Take E, = |
210 GPa, E, = 105 GPa and E,. =
A flange coupling is used to join mm In
two shafts which are to transmit BRASS —= 20 mm 20 mm
300 kW at 800 rpm. 8 bolts are
used at a pitch diameter of 120 mm. 1

. —= 40
Assuming a mean shear stress of COPPER nm

80 MPa, determine the diameter of
the bolts. (9 mm) 30 mm
A 24-mm steel rod passes centrally
through a copper tube of 36-mm Fig. 1.42
external diameter, 30-mm internal diameter and 80-mm length. The tube is
closed at each end by rigid washers and nuts screwed to the rod. The nuts are
tightened till the compressive force in the copper tube is 25 kN. Determine
the stresses in the rod and the tube.

(55.24 MPa tensile; 80.38 MPa compressive )
A load of 80O kN 15 applied to a reinforced concrete column of 560-mm
diameter which has four steel rods of 36-mm
diameter embedded in it. Determine the stress
in the concrete and the steel. Take F for steel =
210 GPa and E for concrete = 15 GPa.

Also find the adhesive force between the 1 2 3
concrete and the steel.
[2.67 MPa (concrete); 37.43 MPa (steel); 30° 30
139.3 kN]

In a framed structure shown in Fig. 1.43, all the
three rods are of the same material and with the
sume area of cross section of 120 mm?. The Fig. 1.43
central rod is 240 mm long but is longer than
its requirement by 2 mm. Determine the forces in the rods if their lower ends
are welded together. £ = 205 GPa.

(115.87 kN in the rod 2 and 66.9 kN in rods 1 and 3)
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24.

26.

27.

28.

In the framed structure of Fig. 1.43, the outer P
rods are of steel and of 260-mm? area of cross 1
section whereas the central rod is of brass and —
of 420-mm? area of cross-section. The length 0.4 mm
of the central rod is 1200 mm. Initially, all the 7l T
rods are of required length. However, while
assembling, the central rod is heated through
40°C. Determine the stresses developed in the
rods. E for steel = 205 GPa, E for brass =
85 GPa and « for brass = 19 x 10-%/°C,
{179kN in 2; 10.34 kN in | and 3)
A steel sleeve of 24-mm internal diameter and
36-mm external diameter encloses an aluminum
rod of 22-mm diameter. The length of the rod rig. 1.44
is 0.4 mm longer than that of the
sleeve which is 400 mm long as
shown in Fig. 1.44. Determine
(i) the compressive load up to

which only the rod is 20mm ALUMINIUM
stressed -

400 mm

BSNNNNNNANNN

e e, ——

=

STEEL 8

3
3

4 mm

———

(ii) the maximum load on the
assembly, if the per- STEEL 8 mm
missible stresses in
aluminum and steel arc
130 MPa and 175 MPa res- I+ 20 mm g
pectively Fig. 1.45

(ii1) the deformation of the assembly
under maximum load
E,=75GPaand £, =205 GPa
(17.42 kN; 138.7% kN; 0.3416 mm)
A composite bar of 2( mm x 20 mm cross section is made up of three flat bars
as shown in Fig. 1.45. All the three bars are rigidly connected at the ends
when the temperature is 20°C. Determine
(i) the stresses developed in each bar when the temperature of the composite
bar is raised tc 60°C
(ii) the final stres:es in each bar when a load of 17.6 kN is applied to the
composite bar
E, =80 GPa, a,=11x10"5°C
E, =200 GPa, o, =22 x 107%°C
(g,=8 MPa; ¢,=32MPa: ¢, =42 MPa; g, =52 MPa)
A load of 120 kN is applied to a bar of 20-mm diameter. The bar which is
400-mm long is elongated by 0.7 mm. Determine the modulus of elasticity of
the bar material. If Poisson’s ratio 15 0.3, find the change in diameter.
(218 GPa; 0.0105 mm)
A metallic prismatic specimen is subjected to an axial stress of o, and on one
pair of sides no constraint is exerted whereas on the other, the lateral strain is
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restricted to one half of the strain which would be there in the absence of any
constraint. Show that the modified modulus of elasticity will be [2E/(2-v?)].
A prismic bar is stretched in such a way that all the lateral strain is prevented.
Find the value of the modified modulus of elasticity. What will be the modefied
Poisson's ratio? [E(1 = w1 + v)(1 - 2V); zero]
A steel bar of 10 mm diameter is subjected to an axial load of 12 kN. If the
change in diameter is found to be 0.0022 mm, determine Poisson’s ratio, the
modulus of elasticity and the bulk modulus. Take G = 78 GPa.
(0.29; 201.4 GPa, 159.8 GPa)
An axial load of 56 kN is applied to a bar of 36-mm diameter and 1-m length.
The extension of the bar is measured to be 0.265 mm whereas the reduction in
diameter is 0.003 mm. Calculate Poisson’s ratio and the values of the three
modauli.
(0.314, E=207.6 GPa, G =79 GPa , K = 186 GPa)
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2.1 INTRODUCTION

In the first chapter, direct and shear forces were assumed to act independently. Also,
the stresses were determined on planes in the normal or tangential directions. However,
in most of the cases, direct and shear forces act simultaneously on a body and the
maximum value of the resultant stress may act in some other direction than of the
load application. It is, therefore, necessary to find out stresses on planes other than
those of load application.

In practical problems, the stress varies from point to point in a loaded
member. Therefore, the equilibrium of an element at a point is to be considered
by taking the element of infinitesimal dimensions so that the stresses approach
the conditions at the point. Such an infinitesimal element may be considered
of any convenient shape and the stresses may be assumed uniformly distributed
over the surface of the element. In a two-dimensional analysis, the thickness
of the element does not affect the results and for convenience sake may be
taken unity.

2.2 ‘STRESS ANALYSIS

While analysing a stress system, the general conventions have been taken as
s atensile stress is positive and compressive stress negative.
o 2 pair of shear stresses on parallel planes forming a clockwise couple is positive
and a pair with counter-clockwise couple negative.

¢ clockwise angle is taken as positive and counter-clockwise negative.

The following cases are being considered:

(i) Direct stress condition (ii) Bi-axial stress condition
(iii) Pure shear stress condition (iv) Bi-axial and shear stresses condition



(i) Direct Stress Condition

Let a bar be acted upon by an external force P and thus a tensile stress acts along its
length (Fig. 2.1a). The stress on any transverse section such as BC will have pure
normal stress acting on it. The stress acting on an arbitrary plane AC inclined at an
angle 8 with the vertical plane BC will have two components:

* normal component known as direct stress component and

» tangential component known as shear stress component.

These stress components can be determined from the consideration of force balance.

TE.EE c

o,.dy.sin @
A
Oyt s T“ ﬂx.-df
a,.dy cos &
B
Fig. 2.1

If the bar is imagined to be cut through the section AC, each portion is in equilibrium
under the action of external load P and the stresses on plane AC. For convenience, a
triangular prismatic element ABC containing the plane AC can be taken for the force
analysis.

Figure 2.15 shows the forces acting on the triangular element.

Let

dy the length of the side BC

ds the length of the side AC

o, = normal stress acting on the plane BC

Og = normal stress acting on the plane AC

Ty tangential or shear stress acting on the plane AC

Assume a unit thickness of the prism and equate the forces along normal and
tangential directions to the plane AC of the prism for its equilibrium, i.e.

Oy.ds - 0,.dy.cos 8=10

]

_ O dycosf _ 0,dycosB

2
0 Oy = =0,cos @ 2.1
' 0 ds dylcos@ * 1)
and Tgds + @, .dysin 0=0 (assuming T, clockwise as positive)
To = — o dysin@ _ _g,dysinf
ds dy{cosf
= -0, sinfcos@ = - %crj sin 280 (2.2)

The negative sign shows that 7,4 is counter-clockwise and not clockwise on the
inclined plane.

* When 6=10°, Og=0, and 73=0
* When 8=45°, oy=0/2 and 13=-0/2 (maximum, counter-clockwise)
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¢ When 8=90°, 0gy,=0 and 73=0
e When 0= 135°, oy=0/2 and 7= 0/2 (maximum, clockwise)

) 0w\ _ o
O % o =0 O o % — O
180°+ 180°-8 180°-8 180°+6
(cw) (cow) (cw) (cow)
(8) (b)
Fig. 2.2

Figures 2.2 (a) and (b) show the planes inclined at different angles to the vertical
alongwith the stresses acting on them. It can be noted from these figures alongwith
the above observations that

+ a plane at angle 8 with the vertical also is the plane with angle (180° + 8).
Thus a plane at angle 45° clockwise with vertical can also be mentioned as the
plane at 225° clockwise or 135° counter-clockwise. Similarly, a plane at angle
—45" with the vertical would also mean a plane at angle 45° counter-clockwise
or angle 225° counter-clockwise or angle 135° clockwise.

# the normal stress on the inclined plane decreases with the increase in angle 6,
from maximum on the vertical plane to zero on the horizontal plane.

o the shear stress is negative (counter-clockwise) between 0° and 90” and positive
(clockwise) between (0° and — 90°. Remember that plane at 135" to the vertical
also means a plane at — 45° as described above.

e the maximum shear stress is equal to one half the applied stress.

The resultant stress on the plane AC,

dr = "ld dﬁz + fﬂz = U: Jm.‘ E +Siﬂ2 HCQSI B

= 0, GD’S&JCGSE l9'|‘Sil'l1 6
=g, cos B (2.3)
Inclination with the normal stress,

o, sinfcos® _

tan ¢ = =tan @
o, cos’ @

or p=0 (2.4)

That is, it is always in the direction of the Tpds C o y.5in 0
applied stress. 0p.05 4
(i) Bi-axial Stress Condition 8 ——
Let an element of a body be acted upon by two ey
tensile stresses acting on two perpendicular Ox.dy cos 8
planes of the body as shown in Fig. 2.3. Let A s 8
dx, dv and ds be the lengths of the sides AB, /8 o,.dx.sin 8

BC and AC respectively.
Considering unit thickness of the body and
resolving the forces in the direction of gy,

4
ardx.ms ] arrd)c

Fig. 2.3
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Oy .ds — O,.dy.cos 8- O,.dx.sin =10
gld}rg;oﬁﬂ'-l. n‘ycirsinﬂ a, dycos@ +{Tj,ti15in9
ds ds " dylcos®  dx/sin@
= 0, cos? 8+ 0, sin” @ (2.5)

or Oy =

The expression may be put in the following form,

1+cos20 1-cos28
To = 0| = |+0,| —5 —

= %{.«:rJr +0,)+ %(ax - 0,)cos20 (2.6)

Resolving the forces in the direction of 7,
Tgds + 0, .dy.sin 8- 0, .dx.cos 6=0

or fa = _ 0, dysin8 +G},dxcﬂs9 __o,dysin o, dxcos8
ds e dylcos@  dx/sin@
= "ﬂ'xSiDEC(EH'i"UySiDBﬂ.‘G& = _{ax-ayJSiD&CUSB
= ";‘{U, - U}.]EiIl 26 (2.7)
Resultant stress,

0, = \Jo,° +1,°
]

[ 2 212
| 1 - .
= IE(O} +0,) *‘E‘“’ Hﬁ'y]msZB} +{“Ew* —0,)sin 26} }

- 172
| 1 11
@40, ) +5(0: -0, )* cos’ 20+25.(0, +0,)(0, -0, )cos29

+i{o‘x -0,) sin’ 26
[1 L 2(c0s? 20 + sin? 1
1. +0,)" + 2{©. - ,)*(cos? 20 +5in* 20)}

+%{a§ -03})cos 28_

r‘I 1 I qn2
= |3 +0,)’ +(0, -0, )2 +E[oi ~03)cos26

- 1r2
- é"ﬂi +0, +20,0, +02 +0, —20,;0’;.-)4'%{02: —"Jy}“““m]

=3

FI 1 , 12
- _E{of +o§j+5(o; —-of,}msZB]
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r 1/2
= %af(1+msza}+%q3(1—cm28)]

'l 1 1/2
= -Z-Gf.Z(:ﬂsz E:l'+£¢:l'2_,,+2$in1 9]

= Jo? cos’ 6+ 02 sin’ 6 (2.8)
and the angle of inclination of the resultant with o,
T -(o, -0, )sinfcos @ o,-0,
tan = L= —0 2 = . (2.9)

Oz O, cos> 6 +0, sin’f O, cotf+0, tand
For greatest obliquity or inclination of the resultant with the normal stress,

d(tan @)

a0 -

or -o,cosec’@+0,sec’§=0 or o,cosec’d = g, sec’ O

Q

T

o
an’8= — or tan@= |—= (2.10)
v g,

Q

g, -0,
tan%_ﬂﬁ+ﬂ'm J_ (2.10a)

The angle of inclination of the resultant with o,

o,dx  O,dytand 0o,
tan @ = —— = — =—
o, .dy o, .dy a,

The above results show that

e the normal stress on the inclined plane varies between the values of o.and o, as
the angle 1s increased from 07 to 90°. For equal values of the two axial stresses
(o, = 0,), Oyis always equal to g, or 0.

o the shear stress is zero on planes wuh ungleh 0” and 90°, i.e. on horizontal and
vertical planes. It has maximum value numerically equal 1o one half the difference
between given normal stresses which occurs on planes at £ 45° to the given
planes.

tan @ (2.11)

1
Toax = * Elﬂ* -0,) (2.12)

and the normal stress across the same plane,

Oy50 = I{a +0,)+ = [cr -0,)cos90" = —{cr_r+cr,.] (2.13)

¢ shear stress in a body suh_]e:.,lﬂd o equdl perpendicular stresses is zero (Refer
Eq. 2.7).

= if any of the given stresses is compressive, the stress can be replaced by a negative
sign in the above denved expressions i.e. g, with - ¢, and &, with —g,.
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e if o, is compressive, the maximum value of shear stress across a plane at 45°
plane is

1 1
Toax = E[{G.t '_':-U.v )] = E(g.t +U}'}

and if o, is numerically equal o0 o,
Tmax = 0= Oy (2.14)

(ili) Pure Shear Stress Condition
pds o

0pds / ‘ N r,gmsi ng
; 4 ‘\‘k I "IJ
’:J Aﬂ{ I-'.dj'aﬁll'l 8 ﬁv? r.dx
r.dy.cos T
.y r.dy r.dx.cos @
A — 5
r.dx

Fig. 2.4

Let an element of a body be acted upon by shear stresses on its two perpendicular
faces as shown in Fig. 2.4. Let dx, dy and ds be the lengths of the sides AB, BC and AC
respectively.

Considering unit thickness of the body and resolving the forces in the direction of oy,

Oyds — T.dx.cos 8- T.dy.sin 6=0

Tdxcos# . tdysinf  Tdxcosf LT dysin @
ds ds  dx/sin@ dylcos@

or ﬂ'ﬂz

= TsinB@cos@+ TsinBcos@ = 7.5in 20 (2.15)

Resolving the forces in the direction of 7,
Ty s — T.dy.cos 6+ T.dx.sin =0
Tdycos@ Tdxsin@ _ Tdycosf Tdysinb
or = g ds dylcos® dx/sin®

= Tcos® @-Tsin’ @

1 +cos28 1-cos20
r[[ 5 ]-[ 5 Hﬂms?ﬂ (2.16)

which shows that it is up the plane for 8 < 45° and down the plane for 8 > 45°,
The resultant stress on the plane AC,

0, = J0,° +Ty° = Ty/(sin26)* +(cos20)> =17 (2.17)
Inclination with the direction of shear stress planes,

sin 28

cos 28
or p= 20 (2.18)

tan @ = = tan 28
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The above equations show that
* the normal stress is positive (tensile) when 8 is between 0° and 90° and negative
(compressive) between 90° and 180°. Maximum values being at 45° (= 1) and
135° (= -17)
¢ the shear stress is positive (clockwise) for 8< 45° and negative (counter- clockwise)
for 8> 45° and < 135° and again positive between 8> 135° and < 180°,
o the shear stress is zero at 45° and 135° where the normal stress is maximum.
These conclusions indicate that when a body is acted upon by pure shear stresses
on two perpendicular planes, the planes inclined at 45° are subjected to a tensile
stress of magnitude equal to that of the shear stress while the planes inclined at 135°
are subjected to a compressive stress of the same magnitude with no shear stress on
these planes.
Compare this result with Eq. 2.12.

(iv) Bi-axial and Shear Stresses Condition

Letan element of a body be acted upon by two tensile stresses alongwith shear stresses
acting on two perpendicular planes of the body as shown in Fig. 2.5. Let dx, dy and ds
be the lengths of the sides AB, BC and AC respectively.

Ta0s ~ Oy dy sin @ r.dxsing -

] - dx
ox Y g8 t;xms a
amdyms e r, Y
A—T=5 T.dy rdycnsﬂ n.dy ra]rsin& o). dx.cos 8g,.dx rr,..msinﬂ

¢ T.dx
a,-dx

L
L

Fig. 2.5

Considering unit thickness of the body and resolving the forces in the direction of
Cgn
Ogds - 0, .dy.cos - 0, dx.sin 6~ T.dy.sin § - T.dx.cos 6
o dycos@ . o, dxsin@ L Tdysin® T.dxcos@
ds ds ds ds

or Gﬂ =

o, dycosf N o dxsin@ N Tdysin 0 N T dxcosf
dyl/cosf  dx/sin@ dy/cos@ dx/sinf

o, cos® 8+ o, sin 0 + Tsin Bcos 6 + TsinBcos O

= 0, cos’ 0+0,sin” 0 +15in 20 (2.19)

1 +cos20 1-cos28 .
= 0O, — +0, — +T.sin 28

1 | .
Ew—" +gj)+5(o'1 -0, )cos 28 + T.5in 20 (2.20)



Compound Stress and Strain 0

Resolving the forces in the direction of T,
Tg.ds + O, .dy.sin 8- g, .dr.cos 60— T.dy.cos 8+ T.dx.sin =0

_O.dysin@ | o, dxcosf , Tdycos® tdxsin@
ds ds ds ds

_ 0. dysin6 N o dxcos@ N tdycos®  tdxsin@

- dylfcos®  dx/sin@  dylfcos® dx/sinf

or Tg=

- & b . 3
= —0,sinfcosf + 0, sinfcosB+ Tcos™ 8- Tsin” e

“%(‘3‘: —a‘_,,}aini&-rr[[] +c§s29)_(1 —{:;)SEEH

= —%[crx—ay]sin25+rc0523 (2.21)

Equations 2.19, 2.20 and 2.21 can be used to determine the stresses on any inclined
plane in a material under general state of stress.

To determine the planes having maximum and minimum values of direct stress,
differentiate Eq. 2.20 with respect to 8 and equate to zero, i.e.

doy 1 :
— = 0-—(o, -0,)25in 260 +21.c0s 260 =
20 2{ = 0y)2si 0
or —;—{ﬂ;—a_‘_]zsinzﬂ = 2t.cos28
or tan 20 = —2= (2.22)
o, -0,

This equation provides two values of 28 differing by 180° or 8 by 90°, the planes
along which the direct stresses have the maximum and minimum values,

Note that the same values of & are also obtained by equating 7, to zero, which
indicates that shear stress is zero or does not exist on these planes. Thus it is concluded
that shear stresses are zero on the planes with maximum or minimum values of direct
stress (They are known as principal planes, to be discussed in the next section).

If o, and o, are not alike, i.e. if one of them is compressive (say g, is compressive),
corresponding expressions can be obtained by replacing o, with —o,.

Note that in general

¢ As the matenial as a whole is in equilibrium under the action of external forces

and internal resistances, an element of any shape at any point in a material will
also be in equilibrium under the internal or external forces.

* An clement of any shape may be considered for force analysis. Usually, the

choice is made depending upon the requirements. For example, if the stresses
on longitudinal and transverse axes are required, a rectangular element is a
suitable choice whereas if the stresses on some inclined plane are to be found,
then a triangular element has to be preferred.

* Relations derived above for various cases are valid when

— inclination is measured in the clockwise direction with the vertical plane,
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— compressive stresses are taken negative and
— the direction of the shear stresses is clockwise on the vertical planes and

counter-clockwise on the horizontal planes.

In case, these parameters are chosen differently, relations have to be modified as

below:

- [If angle is measured counter-clockwise with the vertical planes (Fig. 2.25),

and

and

and

and

8is to be replaced by — @and the relations for direct and shear stresses fora:
complex system of stresses will be )

Oy = O, cus:9+dj.sinzﬂ'—fsin 26

%(«:rJr +0,) +%l.'vt:-'.t -0, )cos 20 - 1.sin20 (2.23)

Ty = %(ax -0, )sin 260 + Tcos 20 (2.24)

If angle is taken counter-clockwise with the horizontal plane, 8 is replaced
with (90" — @) and the relations are

0y = O, sin? g+o, cos” 6+ Tsin 20

= %(ax +ar]-%(a_t - 0,)cos26 + 7.sin 26 (2.25)

| .
Ty = —E[a::-'Jr -0, )sin 26 - Tcos 20 (2.26)

If angle is taken clockwise with the horizontal plane, @ is replaced by
[90° - (-0)] or by (90°+ 8) and

Oy = O, sin® 6+ o, cos” @ - Tsin 20

= %—-:r:[I +0,) w%{ﬂx - 0,)cos26 - 1.5in 28 (2.27
Ty = %{:::‘JF - 0,)sin 26 - Tcos 20 (2.28)

If the direction of the shear stresses is counter-clockwise on the vertical
planes and clockwise on the horizontal planes replace T with —7 and the
relations for the general case will be

Op = O, cos’ 0+0, sin’ @~ Tsin 20

%{a_t +‘cr_,,.:|+%[cnr - 0,)c0s26 - 1.5in 26 (2.29)

1 .
Ty = "-1_'(0-’ — 0, )sin 28— tcos 20 (2.30)

Thus, to use the derived relations directly, it must be ensured that the parameters
are taken in the proper way.
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In general, a body may be acted upon by direct stresses and shear stresses. However,
it will be seen that even in such complex systems of loading, there exist three mutually
perpendicular planes, on each of which the resultant stress is wholly normal. These
are known as principal planes and the normal stress across these planes as principal
stresses. Larger of the two stresses, g, is called the major principal stress and the
smaller one o, as the minor principal stress. The corresponding planes are known as
major and minor principal planes. In two-dimensional problems, the third principal
stress is taken to be zero,
Thus in principal planes shear stress is zero, i.e.
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Ty = -%(d,-cr},}sinw+fm529 =0 (Eq. 2.21)
or %fﬂx - 0,)sin26 = tcos 26
2
or tan 20 = —— 231)
o,-0,

which provides two values of 2@ differing by 180° or two values
of @ differing by 90° Thus the two principal planes are
perpendicular to each other. (Also refer Eq. 2.22)

From Fig. 2.6,

27
J©,—0,)! +47’
o, -0,

cos 26 = i'__"_'_'}__'_'_‘
.J{cr], -0,)’ +41° Fig. 2.6

Right-hand sides of both the above equations should have the same signs, positive
or negative while using them. Substituting these values of sin 26 and cos 20 in Eq.
2.20, two values of the direct stresses, i.e. of principal stresses corresponding to two
values of 26 are obtained.

sin26=

Oy = %(ax +0,) +é(crx -0,)cos 20 + 7.5in 26

1 (o,-0,) 2

- 1.
2 Jio,-0,) +47 :i{:rx ~0,)? +41°

i 1 (6, -6.)° +41°
E{ﬂ-_r"'gy}i_ =

2 1’{:}, -0,) +47°

1 1
= 5O, +0,)% EJ{U‘I -06,)" +41° (2.32)

1
E{ﬂ'_t +0,)t
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Maximum (Principal) Shear Stress

In any complex system of loading, the maximum and the minimum normal stresses
are the principal stresses and the shear stress is zero in their planes. To find the
maximum value of shear stress and its plane in such a system, consider the equation
for shear stress in a plane, i.e.

| .
Ty = ‘5{'3': - 0,)sin 20 + Tcos26 . (Eq. 2.21)
For maximum value of 7y, differentiate it with respect to @ and equate to zero,
dty ng =
=5 " —(0, —0,)cos28—27sin20 =0
or tan 26 = ———— (2.33)

2t
This indicates that there are two values of 26 differing
by 180° or two values @ differing by 90°. Thus maximum
shear stress planes lie at right angles to each other.
{Crr -0,)

Now, as tan20 = —————— can be represented as

2t o=

shown in Fig. 2.7

o, ~ 0,

sin 28= ?—1;
J(O, —0,)% +47°

2T

20= t
- ,}{a,. -0,)" +47°

Right-hand sides of both the above equations should have the opposite signs, if
one is positive the other is negative while using them. Substituting these values of
sin 208 and cos 28 in Eq. 2.21, two values of the shear stress are obtained.

Ty = -%{o’x -0,)sin 268+ tcos26

o,—-0 2T

Jo,—0,) +47°
2 2
o, —-0,) +471
- il¥=il‘j{ﬂ}*ﬂ'y}l+4fz
2o, 0, +4r* 2

This provides maximum and minimum values of shear stress, both numerically
equal. In fact the negative or minimum value indicate that it is at right angle to the
positive value as discussed above and two are the complimentary shear stresses. Thus
magnitude of the maximum or principal shear stress is given by

=i tT.
Jo, -0, +47°

1
= :F'_E[ﬁ‘; _u‘}_'-]




1
.= EJ(U, -0,) +41°

1 1
As maximum principal stress, O} = E{a'x +o,)+ —iJ{d‘x - 1:1-'},}2 +47° (i)

1 1
and minimum principal stress, 0, = E{ﬂ} +0,)- EJ(U; -0, )? +41? (i1)

Subtracting (ii) from (i), 6, - 0, =,/(0, - 6,)* +47° ;

1
Toax = E(Gl -03)
) 1 1 2 2
Thus in general, T = -Z-(G‘. ~0;) = E\/(a‘ -0,) +41 (2.34)
. . 2t
Now, principal planes are given by, tan28, = —— pe
x ¥
) o, -0,
~and planes of maximum shear stress, tan 26, = - 2z

Multiplying the two, tan28,.tan 26, = -1 which means

20, = 26, +90° or 8, =6, +45°

This indicates that the planes of maximum shear stress lie at 45° to the planes of
principal axes.

The above conclusions can also be drawn from the fact that the case of biaxial
stresses on a rectangular element discussed in the previous section is a case of principal
stresses, as no shear stress is acting on the horizontal or vertical planes. Thus, o, and
o, also denote principal stresses in the element and as in case of biaxial stresses, the
maximum value of shear stress lies in the planes at 45° to the principal planes and is

1 I T 3
T, =—(a,-az}=5\((cr,uuy] +4r

a2

2.4 MOHR’S STRESS CIRCLE

The stress components on any inclined plane can easily be found with the help of a
geometrical construction known as Mohr's stress circle.

Two Perpendicular Direct Stresses

Let the material of a body at a point be subjected to two like direct tensile stresses
o, and g, (0, > 0,), on two perpendicular planes AD and AB respectively (Fig. 2.8).
Make the following constructions:
® On the x-axis, take OF = g, and OF = O, to some scale. A stress is taken towards
the right of the origin O (positive) if tensile and toward left (negative) if
compressive.
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e Bisect EF at C.

¢ With C as centre and CE (= CF) as radius, draw a circle.

The radius CF represents the plane AD (of direct stress ¢,) and CE, the plane
AB (of direct stress 0,). Note that the two planes AD and AB which are at 90°
are represented at 180° apart (or at double the angle) in the Mohr’s circle. This
indicates that any angular position of a plane can be located at double the angle
from a particular plane.

e Locate an inclined plane in this circle by marking a radial line at double
the angle at which the required plane is inclined with a given plane, e.g., if
the plane BD is inclined at angle @ with plane AD in the counter-clockwise
direction, then mark radius CR at an angle 268 with CF in the counter-clockwise
direction.

¢ Draw LR L x-axis. Join OR.

Now, it can be shown that OL and LR represent the normal and the shear stress

components on the inclined plane BD.

From the geometry of the figure,

ocC = %{OC+OC]= %[{UF—CF}+(GE+CE]]
- %[(0F—CF)+(GE+CF;] .(CE=CF)
1 1
1
CL = CRcos20=CFcos20= E{G-‘ -0,)cos 20 ...(CR = CF)

1 1
Thus OL = OC + CL = Z(0, +0,) + (0, - 0,)c0s20 = g,
...{Refer Eq. 2.6)

1
And LR= CRsin 26 = CFsin20= -2‘[0} -0,)sin268=71;  ...(Refer Eq. 2.7)
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The resultant of OL and LR is represented by OR at an angle ¢ with OL, i.e. with
the direction of oy Thus the components OL and RL represent the normal and shear

stress components on the plane BD.
Note the following:

* Direct stress component on the inclined plane BD represented by OR is on the
right side of the origin, it is positive or tensile.

¢ Shear stresses giving a clockwise rotation are assumed positive and are above
the x-axis. In the present case, the shear component LR represents a clockwise

direction.

e The stress components on a plane DG perpendicular to BD are obtained by
rotating the radial line CR through double the angle, i.e. 180° in clockwise or
counter-clockwise direction. Thus CS represents the plane DG. OM indicates
the tensile component and SM, the shear component.

Two Perpendicular Direct Stresses with Simple Shear

In the above-dis-
cussed case, CR and
CS represent two
perpendicular planes
having direct tensile
stresses OL and OM
and shear stresses LR
{(clockwise) and MS
(= LR, counter-
clockwise) resp-
ectively. Now, if these
happen to be the
known stresses on two
perpendicular planes,
then stresses on any
other inclined plane

Fig. 2.9

can easily be found by locating that plane relative to any of these planes.

Let CR and CS represent two perpendicular planes BD and AB respectively so that
OL = 0,, OM = o, and LR and MS each equal to 7in the clockwise and counter-
clockwise directions respectively (Fig. 2.9). Now if it is desired to find stresses on an
inclined plane at angle 8 clockwise with plane BD, a radial line CP may be drawn at
angle 28 in the clockwise direction with CR. Then ON and NP will represent the
direct and shear components respectively on the plane AD and the resultant is given

by OP.

Thus the procedure may be summarised as follows:
* Take OL and OM as the direct components of the two perpendicular stresses o,

and O,

* At L and M, draw Ls LR and MS on the x-axis each equal to 7T using the same
scale as for the direct stresses. For the stress system shown in Fig. 2.8, LR is
taken upwards as the direction on plane BD is clockwise and MS downwards as
the direction on plane AB is counter-clockwise.
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» Bisect LM at C and draw a circle with C as centre and radius equal to CR
(=CS5). Let ZLCR = ﬁ

* Rotate the radial line CR through angle 28 in the clockwise direction if & is
taken clockwise and let it take the position CP.

® Draw NP L on the x-axis. Join OP.

It can be proved that ON and NP represent the normal and the shear stress

components on the inclined plane AD.
From the geometry of the figure,

1
0C = ~(0,+0,) as before.

CN = CP cos (26 - f)
= CR cos (26- ) ..{CP =CR)
= CR (cos 26 cos f + sin 28sin §)
= (CR cos f§) cos 28 + (CR sin ) sin 20
= CLcos 28+ LR sin 20

1 .
= -i(ﬁx—ﬂy}cm29+f.sm29 ..{CL = OL - OM)
Thus ON=0C + CN = %(ﬂ'j, ++:I,,}|+%|ﬁ::rJr -ay}cuszﬂ+t.sinlﬁl = Oy
...{Eq. 2.200)
and NP = CP sin (28~ ) = CR sin (26 - f)
= CR (sin 26 cos 8 — cos 28 sin f§)
= (CR cos ) sin 28 - (CR sin ) cos 20
= (L sin 20— LR cos 28
1 .
= E(GI - (.'-'y)sm 20-tcos20 = -1, ...(Eq. 2.21)

As NP is below the x-axis, therefore, the shear stress is negative or counter-
clockwise.

1 :
Mathematically, NP = — I:E (0, —0,)sin 20— Tcos Zﬂ:l

= -—%(ﬂ'Jr uo'}.}sin?.ﬂ+‘rcm291

Principal Stresses

As shear stress is zero on principal planes, OF represents the major principal plane with
maximum normal stress. In a similar way, OF represents the minor principal plane.

OF = OC+CF=0C+CR=0C+ .,"er_}_l_m?

2
= %[0& +U—*'}+\H-lz-(g‘ ucrj,)} +T°

1 1 2 4 an2
= E[GJ +G_‘-'}+_2.J(GI —-a,) +4r1

= Major principal stress



OE=0C-CE=0C-CR=0C- JCI* + LR?

= %{ax +U}']_%J{(GI _UJ'}I +477)

= Minor principal stress
The angles of inclination of planes of major and minor principal stresses are /2
and (90° + /2) respectively clockwise with the plane of stress o,.

Example 2.1 Two pieces of wood of section 50 mm x 30 mm are joined together
along a plane at 60° with the x-axis. If the strength of the joint is 7.5 MPa in tension
and 4 MPa in shear, determine the maximum force which the member can sustain.

Solution Let the maximum stress along the x-axis be o,
Angle with the vertical plane = 90° - 60° = 30°

- - 3
Then at the joint, 0= 0, cos’ 8= &, cos’ 30°= — 0,

4

3 .

or 75= 20 o 0= 10 MPa (1)
1 1
Tg=— > o, sin 20=— 2 o, sin 60°= - ? o,

3 oy
or -4 =- T g, or o= 924 MPa (i)
(shear stress at the joint is assumed counter-clockwise to have positive axial tensile

stress )

From (i) and (ii), for safety of the joint, the maximum axial stress to be taken by
the member is 9.24 MPa.
Maximum force, P = (50 x 30) x 9.24 = 13 860 N or 13.86 kN

Example 2.2 A rectangular block is subjected to a two perpendicular stresses
of 10 MPa tension and 10 MPa compression. Determine the stresses on planes inclined
at (i) 30° (ii) 45° and (iii) 60° with the x-axis.

Solution
(i) Inclination with the vertical plane =90° - 30° = 60°

O = Oy cos’ 8+, sin’ 6 (Eq. 2.5)

= 10{cos60° —sin60°) = lﬂ(& - %)= — 5 MPa (compression)
or using the expression,

1 1
Oy = E(ﬂ-‘, +0,) +E(E‘ - 0,)cos26 (Eq. 2.6)

1 1
= E(lﬂ +(-10) + E[IGI— (-10)]c0s120° = — 5MPa (compression)



Teg = — %(c.rx -0,)sin26

= = -;-[lﬂ— (-10)]sin 120° = — 8.66 MPa (ccw)

Solution by Mohr’s circle is shown in
Fig. 2.10. Adopt the following procedure:

e Take OF equal to 10 MPa to some
suitable scale to the right of O for
tensile stress. Similarly, take OF to the
left for compressive stress.

e The centre of EF is the centre of the
Mohr’s circle. Draw the circle passing
through E and F points. Now OF and
OE represent the planes of tensile and
compressive stresses respectively.

« Make angle FCR =120"i.e double the R . __——R"
angle of the inclined plane with OF in R
the clockwise direction. Fig. 2.10

Then CR represents the inclined plane.

Og = OL = 5 MPa (compressive being on the left of point O)
Too=LR = 8.66 MPa (ccw being below the x-axis)

(ii) Inclination with the vertical plane = 90° — 45° = 45°
Oy = O, c0s’ @ +0, sin® @

= 10(cos® 45°-sin145°}=10(%—-!2-)=0

1 :
and Tys = 'E{U;‘Uyl'ﬁm 20

= —%[lﬂ - (-10)]sin 90" = ~10 MPa (ccw)

Solution by Mohr’s circle is self-explanatory.
(iii) Inclination with the vertical plane = 90° - 60° = 30°
O = 10(cos® 30° —sin” 30°) = m(% - %] =5MPa
1 .
and Too = —E(UJr -0, )sin26

= - %[lﬂ — (-10)]sin 60° = -8.66 MPa (ccw)
Solution by Mohr’s circle is self-explanatory.

Example 2.3 A piece of material is subjected to two perpendicular stresses as

follows:
{a) tensile stresses of 100 MPa and 60 MPa



(b) tensile stress of 100 MPa and compressive stress of 60 MPa

(c) compressive stress of 100 MPa and tensile stress of 60 MPa

(d) compressive stresses of 160 MPa and 60 MPFa.

Determine normal and tangential stresses on a plane inclined at 30° to the
plane of 100 MPa stress. Also find the resultant and its inclination with the normal
stress.

Solution
(a) Inclination with the vertical plane = 30°

0y = O, cos’ §+0,sin” 8 = 100cos’ 30" +60sin” 30°
= lﬂl}x%+ﬁﬂ><i* =90 MPa (tensile)

1 :
Ty = —Elia::rJr -0, )sin26

1 . a
= -Etlm-ﬁﬂ}smﬁ{} =-17.32 MPa (ccw)

0, = o’ +14° =907 +(~17.32)* = 91.65 MPa
Its inclination with normal stress oy,

tan @ = E:%:ﬂ.lngl or @=10.89°

O30
The inclination of the resultant with o, can also be found,

a
mna:—’“,wn;;()“:%tanSﬂ“:D.Hﬁ or «=19.11"

x

Thus @+ @=19.11°+ 10.89° = 30°= 0

D
m 90 MPa 10.8°
Cc L F
J 1 P
] 109 3 60" - 9155”:: —=—100 MPa
81.65 MPa ﬁ -
-—— 50 MPa ——+{ A = ﬁ"g"
e 90MPa D ~ A B
o —eeeeemo 100 MPg 60 MPa
(a) (b)

Fig. 2.11

Solution by Mohr’s circle is shown in Fig. 2.11 (a). The procedure is as follows:

e Take OF and OF equal to 100 MPa and 60 MPa respectively to some suitable
scale to the right of O for tensile stresses.

o The centre of EF is the centre of the Mohr’ circle. Draw the circle passing
through E and F points. Now OF and OE represents the planes of tensile stresses
100 MPa and 60 MPa respectively.



’ j = 1 'Ltwd:m.

¢ Make angle FCR = 60°, i.e. double the angle of the inclined plane with OF in
the clockwise direction.

Then CR represents the inclined plane.

Oy = OL = 90 MPa (tensile)

Ty = LR = 17.32 MPa (counter-clockwise)

0,=0R = 91.65 MPa

Inclination of the resultant with OL or gy, ¢ = 10.9°
The results are shown in Fig. 2.11(b).

(b) O30= 100cos? 30° = 60sin® 30° = 100 x%-ﬁﬂxi— = 60 MPa (tensile)

1 . o0
T3p= - E|1-::|4t:|— (-60)]sin 60° = — 80 x 0.866 = —69.28 MPa (ccw)

0,= g} +74° = /607 +(~ 69.28)* = 91.65MPa

T 69,28
inclination with Gy, tan @ = —= = —— =1.155
inclination with oy, @ o 60
or @ =49.11°

o can be found to be -19.11*
Solution by Mohr's circle is shown in
Fig. 2.12 which is self-explanatory.
Ty = OL =60 MPa (tensile)
Ty = LR =69.3 MPa (counter-
clockwise)
o, = OR=91.65 MPa
Inclination of the resultant with OL or oy,
p=49.1°

(¢) Oy = —100cos® 30° + 60 sin® 30°

==100 :»:§+IE-[ZI>{l
4 4
= —60) MPa (comp.)
Ty = u%[ulﬂﬂ-ﬁ{}}sinﬁﬂ" = 80 % (.866 = 69.28 MPa (cw)
o = _J 2 2 _ J 2 2 _ MP
r = Oy +T" =4(—60)" +(69.28)" = 91.65 a
T 69.28
Inclination with oy, tan p= —= = =1.155
; G
or p=49.11°
a can be found to be —19.11°,
(d) Gy = —100cos® 30° - 60sin® 30°

3 1
= --ll:lll'_:-:»:1—-{5.(]:a::E = - 90 MPa (comp.)



Ty = -%[-lm- (=60)] sin 60° = 20 X 0.866 = 17.32 MPa (cw)

0,= o * +15° = {(~90)? +(17.32) = 91.65 MPa

o Ty _ 1732
Inclination with oy, tan @= a =00 - 0.1924
or ¢=10.89°
« can be found to be -19.11°.

Example 2.4 A piece of material is subjected to two perpendicular tensile stresses
of 100 MPa and 60 MPa. Determine the plane on which the resultant stress has
maximum obliguiry with the normal. Also find the resultant stress on this plane.

Solution For maximum obliquity of the resultant with the normal to a plane is
given by

a 100
tan 0 = ’—I=,’—=1.29 =5224°  ..(Eq.2.10
s . or B =5 (Eq )

Direct stress,
Osy24 = O cos® 6+o, sin” @
= 100cos® 52.24° + 60sin> 52.24°
= 100x0375+060x0.735=375+37.5=75 MPa
Shear stress,

I :
Topag = —E{cr, - 0,)sin 26

_ _%(m— 60)sin104.48° = ~19.365 MPa (ccw)

Resultant stress,

0, = O +14° =75 +19.365° = 77.46 MPa

r

19.365

tan @ = =0.2582 or @=1448°

The resultant and its inclination can also be found directly by using relations

o= JJIZ cos” @ +:r)'1.2 sin” @

= V1002 cos? 52.24° + 607 sin® 52.24°
= f3749.8 + 2250 =77.46 MPa

Inclination with a,

60
tan & = ﬁtﬂ“ 52.24° or «@=23776"

(Note that o + ¢ = 37.76" + 14.48° =52.24° = 6)
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Solution by Mohr’s circle 1s shown in Fig. 2.13. OR is tangent to the circle for
maximum obliquity.

o E LC

60

¥

A & &

75 - |
100 -

Fig. 2.13

6=1044/2=522°
Jsp, = OL =75 MPa (tensile)
Ts32 = LR = 19.4 (counter-clockwise)
0,=OR=715MPa
Inclination of the resultant with OL or 05, 5, @ = 14.5°

Example 2.5 The stresses on two perpendicular planes through a point in a
body are 30 MPa and 15 MPa both tensile alongwith shear stress of 25 MPa. Find
(i) the magnitude and direction of principal stresses
(i) the planes of maximum shear stress
(ifi) the normal and shear stresses on the planes of maximum shearing stress.

Solution

Principal stress = -%{G'J +0,)% %J[G’x -0, ) +4dt?

= %{3u+ IiJi%J{Sl}- 15)% +4(25)

I

225% %1‘225 +2500 = 22.5+26.1
= 48.6 MPa (tensile) and -3.6 MPa (compressive)

2t 2x25 50
28 = = =—=3.333 =733
tan G.-0, ~30-15 15 or 28=73
or 6, = 36.65° and @, =36.65° + 90° = 126.65°

However, to correlate the angle of the major principal plane, it is necessary to
calculate the stress at one of the angles,

0, = 0, cos’ 0+0,sin’ 0 +7sin 20

30cos” 36.65° +15sin’ 36.65° +25sin[2(36.65°)]
19.31 + 5.345 + 23.946 = 48.6 MPa



Thus major principal stress 48.6 MPa occurs on the plane inclined at 36.65° with
| the plane of 30 MPa tensile stress (clockwise) and the minor stress occurs on plane at
126.65°.
Maximum shear stress occurs on planes at 45° to the principal planes, i.e. on planes
| at 36.65° + 45° = 81.65° and 126.65° + 45° = 171.65" (or at 36.65° - 45° = - B.35°
| which is the same plane as 171.65°)

| Ggres = Oy t:t:nszﬁl'ﬂrj,r sin® @ + Tsin 26
= 30cos” 81.65° +15sin” 81.65° + Tsin 2(81.65°)

= 0.632 + 14.684 + 7.184 = 22.5 MPa
On the plane at -8.35%, the stress value will also be found to be same.

1
T = % 5 (486~ (-36)= £26.1 MPa

Solution by Mohr's circle is shown
in Fig. 2.14 which is self-explanatory.

In brief, OL = 30 MPa, OM = 15
MPa, LR = MS = 25 MPa. Mohr’s
circle is drawn with C, the mid-point
of LM as centre and passing through R
and S.

+ Major principal stress = OF =
48.6 MPa (tensile) at angle 73/2
= 36.5° clockwise of CR or plane
of 30 MPa tensile stress.

& Minor principal stress = OF =
3.6 MPa (compressive) at angle
253/2 = 126.5° clockwise of CR
or plane of 30 MPa tensile stress.
Maximum shear stress = CG =
CH =26.1 MPa

# Inclination of the planes of maximum shear stresses:

163/2 = 81.5° clockwise of CR or plane of 30 MPa tensile stress and
(34312 = 171.5") clockwise or 17/2 = 8.5° counter-clockwise of CR or plane of
30 MPa tensile stress.

O3y 65 = OC = 22.5 MPa

Example 2.6 Ina 2-D stress system, stresses at a point in a material are 50 MPa
compression and 30 MPa shearing in one plane and 20 MPa tensile and a shearing
stress in another plane at 6(F 1o the first one. Determine the value of the shearing
stress in the second plane and the principal stresses and position of their planes.

Solution Let 6, be the second tensile stress in a plane perpendicular to that of o,.
Then in any other plane at an angle @ to the first one,

O = %{gr +0,) +%{a‘x ~0,)cos20 +T.sin260  (Eq. 2.20)
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Thus in a plane at 60°,
1 1 .
20 = —2—(—~5ﬂ+a'y]+5(—50*-aj,)cos120° +30sin120°

40 = -50+0, +(-50—0,)(=0.5) + 60X 0.866

40 = -5{}+cr}. +25 +D.5cr,, +51.96

1.50,=13.04 or o,=8.69MPa
Tg = —(— 50 — 8.69) sin 120° + 30 cos 120° = 10.414 MPa

1 1
Principal stress = E{G* +0',}'—"5J{0', —D})z +47°

= %{-50+3.ﬁ9}¢%,jc-5u-3.59}2 +4(30)?

= -20.66 +41.97 = 21.31 and —62.63 MPa

2t 2x30
tan28 = = =-1.0223
o,-0, -50-8.69
or 20=-45.63 or 6, =-22.82° or 157.18°
and 6, = -22.82° +90° = 67.18°

Example 2.7 Figure 2.15(a) shows the resultant stresses on two planes at a
certain point in a material. On a certain plane it is 800 MPa compressive ar an angle
of 3F to its normal and on another plane it is 600 MPa tensile at an angle of 75° to its
normal. Determine the angle between the planes. Also find the principal stresses and
their directions to the given plane.

800 MPa
130%

&
Fig. 2.15

Solution On the plane p, the resultant stress is 800 MPa compressive, its normal
component will be compressive and the shear component counter-clockwise.
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Thus take a radial line OP at an angle of 30° with the horizontal to the left of O
downwards indicating compressive normal stress and counter-clockwise shear stress
(Fig. 2.15b).

On the plane g, the resultant stress is 600 MPa tensile. Take a radial line OQ at an
angle of 75° with the horizontal to the right of O upwards indicating tensile normal
stress and clockwise shear stress.

Draw a circle passing through points P and Q and having centre on the horizontal
line through O. The circle can be drawn by drawing a right bisector of PQ, the
intersection of which with the horizontal line through O is the point C. Now, Mohr
circle is drawn with centre C and radius equal to CP or CQ.

Angle between the planes = £ PCQ/2 = 156°/2 = 78°

Major principal stress = OE = 8§25 MPa (compressive) at an angle equal to half of
ZECP, i.e 36/2 = 18* clockwise of plane p.

Minor principal stress = OF =525 MPa (tensile) at an angle equal to half of ZFCQ,
i.e 60/2 = 30° clockwise of plane g.

The principal planes are shown in Fig. 2.15¢.

Example 2.8 Figure 2.16(a) shows the stresses at a point in a material subjected
to 2-D stresses. The stresses on a certain plane are 90 MPa tensile and 40 MPa shear
whereas in another plane 60 MPa tensile and 30 MPa shear. Determine the angle
between the planes. Also find the magnitudes and directions of the principal planes.

Solution The Mohr’s circle is self-explanatory, as shown in Fig. 2.16b.

90 MPa
60 MPa 1 40 MPa
—_— p
30 MPa
q (a)
0
- 47
(@ : &0
Fig. 2.16

Take OL =90 MPa ; LP = 40 MPa; OM = 60 MPa; MQ =30 MPa

Join PQ. Draw right bisector of PQ intersecting OL in C. With C as centre draw a
circle passing through P and Q.

Angle between the planes = ZPCQ/2 = 146°/2 = 73°

Major principal stress = OF = 126 MPa (tensile) at 84°/2 or 42° clockwise of
plane p

Minor principal stress = OF = 47 MPa (tensile) at 50°/2 clockwise of plane g

The principal planes are shown in Fig. 2.15(c).



E-y

2.5/ THREE COPLANAR STRESSES = .

Referring to Fig. 2.17, the radial lines CR, CP and CS in Mohr’s circle represent three

planes BD, AD and AB
respectively. The normal stresses
on these planes are OL, ON and
OM respectively and lie in a plane
(the surface of the paper). The g
angle between any two planes in Cy
Mohr’s circle is twice the actual
angle between the planes. This
property of Mohr’s circle is made
use when three direct stresses
alongwith the angular positions
of their planes are known.
The procedure is as follows:

L ]

Fig. 2.17

Mark a point 0. Draw a

vertical line 0’0" through it (Fig. 2.17).
Draw three lines p’, ¢’ and »’ parallel to the vertical line through O’ at distances
representing the direct stresses in the directions p, ¢ and r to a suitable scale.
Tensile stresses (positive) are taken on the right side of 0’0" whereas the
compressive stresses (negative) on the left. Assuming that the stresses in the
directions p and g are tensile and 1n the direction r it is compressive, the lines
P, q’ are taken towards right, and " towards left.

Take a point at a convenient position on the middle vertical line. Assume that
the middle line is p” and the point taken is P’

Draw a line through P’ making an angle 8 with the vertical through P’ in the
same direction sense as the plane g has with the plane p. In this case it is taken
counter-clockwise. Let this line intersect with the vertical through ¢’ at Q.

In the same way, draw a line through P’ making an angle B with the vertical
through P in the counter-clockwise direction or at angle w in the clockwise
direction. Let it intersect with the vertical through " at R.

Draw a circle passing through P, Q and R by taking perpendicular bisectors of
P'Q and P'R (not shown in the figure), the intersection locates the centre C.
This is the Mohr’s circle.

Let the vertical line through P’ have the second intersect point with the
circumference of the circle at P as shown in the figure. Join CP, CQ and CR.

Now the radial lines CP, CQ and CR represent the planes of stresses p, g and r
respectively because
— The angle made by plane CQ with the plane CP at the centre of the circle is the

angle made by chord PQ at the centre which is 286, i.e. double of angle PP'Q
made by the chord PQ at the circumference of the circle.

The angle made by plane CR with the plane OP at the centre is 23 counter-
clockwise or 2 y clockwise, i.e. twice of that made by chord PR at P’ on the
circumference of the circle.
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Let a horizontal line through C intersect the vertical through O at @ and the circle
at E and F as shown in the above figure.

Principal stresses are given by OF and OE.

The angular position of major principal stress is /2 clockwise of plane CQ and of
minor principal stress ¥/2 counter-clockwise of plane CR.

Example 2.9 Fig. 2.18(a) shows three direct stresses in three coplanar directions
p. q and r at a particular point. Determine the magnitude and the directions of the
principal stresses.

Solution Draw the Mohr’s circle as follows:

* Take a vertical line O'Q”. Draw three more vertical lines p’, ¢’ and r’ parallel to
line O’O” at distances representing stresses of 80 MPa, 30 MPa and 50 MPa
respectively to a suitable scale. Lines of 80 MPa and 30 MPa are taken to the
right being tensile and 50 MPa on the left being compressive.

¢ Take a convenient point on the middle line 4, say point Q’. Draw a line making
an angle 45° through this point in the clockwise direction as plane p is at 45° of
plane g in the clockwise direction. Let this line intersect line p” at point P.

* Similarly, draw a line through Q" at an angle (105° — 45°), i.e. 60° in the counter-
clockwise direction as plane ' is at 60° in counter-clockwise direction of plane
q. Let this line intersect line " at R.

* Draw a circle passing through points P, Q" and R by taking right bisectors of PQ’
and RQ'. Let their point of intersecting be C which is the centre of the circle.

¢ Let the other point of intersection of line g* with the circumference be Q. Then
CP, CQ and CR represent the planes of p, 8 and r respectively.

o

N

H
! 14
[
r

50 MPa £ o \ F
(comp) 30 MPa \ 17.820-+7C71-4a37 }
r (tensile) I - - ~--fP
q
45° 45°

I.'}Nﬁ’a

/75 SOMF |50 MPa @
B Reneie) EﬂM:Pat::EﬂMPa""
(a) (b)
~ Fig. 2.18

* Draw a horizontal line through C intersecting the circle at E and F,
Major principal stress = OF = 82.5 MPa (tensile) at an angle equal to half of
ZFCP, i.e 13/2 = 6.5° counter-clockwise of p.
Minor principal stress = OF = 52.5 MPa (compressive) at an angle equal to half of
ZECR, i.e 17.8 = 8.9° clockwise of plane r.



¢

Strength of Materials

2.6 ELLIPSE OF STRESS

This is another graphical method to be used
when a material is subjected to direct stresses
o, and o,. The method is as follows:
¢ Draw two circles with O as centre and
radii equal to 0, and o, taken to a suitable
scale (Fig. 2.19).
¢ Through O draw AB parallel to the
inclined plane.
e Draw OE L AB through O intersecting the
inner circle at D and outer circle at E.
¢ Draw EG 1L OX.
e Draw DG L EF.

Now, OP =
and PG =
Also, OF =
and FG =
0G =
tan o =
tan @ =

OD + DP = 0D + DG cos 8 Fig. 2.19
0, + (DE cos 8) cos 8= 0, + (0, - 0,)cos” 0
o, cos’ 8+ g, (1- cos® B) = g, cos’ B+ 0, sin’ 8 = 0
(Refer Eq. 2.5)
DG sin 8= (DE cos @) sin 8
1 .

(0, - 0, Jeos @sin 8= E(ﬂ-} -0,)sin20 =,

(Refer Eq. 2.24 with 7=())
OFE cos 8=0,cos 8

HD cos =0, sin 0

Joicos’@+a}sin® =0, (Refer Eq. 2.8)

9,50 _ %y ang (Refer Eq. 2.11)
= = =—=[an . A
o, cosf o, efer Eq

PG (0, - o, )sinBcosB

= Ref .29
OP o _cos %9 +a,sin ‘g (Refer Eq. 2.9)

For different values of 8, point G can be located, the locus of which is
evidently an ellipse as shown in the figure. The diagram is thus known as ellipse

of stress.

Example 2.10 A piece of material is subjected to two perpendicular stresses as

Jollows:

(a) Tensile stresses of 100 MPa and 60 MPa

(b) Tensile stress of 100 MPa and compressive siress of 60 MPa

Determine normal and tangential stresses on a plane inclined at 30° to the plane
of 100 MPa stress. Also find the resultant and its inclination with the normal stress
using ellipse stress method.



Solution

(a)

(b)

In the statement it is not specified
whether the inclined plane is clockwise
or counter-clockwise relative to the
plane of 100 MPa stress. So, it can be
taken in any sense relative to OX. This
merely affects the sense of direction of
shear stress on the inclined plane. Ellipse
of stress for the given data is shown in
Fig. 2.20 which is self-explanatory. The
results are
Oy=0P =90 MPa;
Tg=GP = 17.3 MPa;
0,=0G =91.6 MPa;
@=< POG = 10.9°,
a=.£ FOG = 19.1°
Ellipse of stress for the given data is shown
in Fig. 2.21. OFE represents the tensile
stress and 0D the compressive stress. The
results are
Oy=0P = 60 MPa;
To=GP = 69.3 MPa;
g,=0G =91.6 MPa;
Q=4 POG =49.1%
a=Z FOG=19.1"

Fig. 2.20

m

30° \ F
EXb RN
49.1°

Fig. 2.21

2.7 PRINCIPAL STRESSES FROM PRINCIPLE STRAINS
(a) Two-Dimensional System
In a two-dimensional system ¢; =0, and

or
and

ar

£ = G,/E - vo,/E

E]+E = dl - Vﬂ: or UI = EI.E + V{TE

& = G/E - vao/E
EQ.E = 'l:rz - VUI

Inserting the value of @, from (i) in (ii),
&.E = 0, - EL.E+ voy) = 65(1 — V) — veL.E

E(ve, + &)

or ﬁz = ] _ vz
- E(ve, +£)
Similarly, a = T

(b) Three-Dimensional System
We have

£, = 6/E = vo,/JE = va,/E

(1)
(i1)

(2.35)

(2.36)

(i)



& = 0YE - vou/E - vo|/E (ii)
& = 0y/E — va/E — va/E (iii)
From (i),
o, =Ee + Vo, + 0y)
Inserting this value in (11) and (iii),
Ee, = 0y, - vo, - VIEE, + (G, + 03]

or Eg,+ ve) = 6, (1 - V)-ay(1 + Vv (iv)
Similarly,
E(gg+ ve) =o5(1 - V) -y (1 + Vv (v)
Multiplying (iv) by vand (v) by (1 - v),
E(g,+ vepv=05(1 - V)V = a5 (1 + vV? (vi)
Eg+vep(l-v)=a(1-V) (1 =V =-a:(l =V)v (vii)

Adding (vi) and (vii),
E[(&;+ ve) v+ (& + vE) (1 - V)]
E(&,V + VE\V + £+ VE, — VE;— VE|V)
E(&,v+ g3+ ve - vEy)
El(1 -vgy+ (g, + &)v]

1=V (1 -v-03(1 + WV

& [(1-vV3) (1 - v) = (1 + WV

O3 [l - V= v vV -V - )
Gll-V-v-V]=0(1+ W1 -2v

nmmnun

Thus
o = E[(1 —{l:‘i}i:;('ll'iﬁé :'] &)Vl 2.37)
Similarly,

If direct and shear strains along x- and y-directions are known, the linear or normal
strain (€g) in a direction at angle @ with the x-direction of a body can be found by the
following method:

Y
E D
yoom c___E__“ C" c E c
Bl ) ga— EC cos 8
r ¢ [ pEsng
l' ,' CDcos 8
ir 9 x
(8] A A
(a) (b)
Fig. 2.22.

Let a rectangular element OACB with angle of the diagonal & with the direction of
€, or x-axis distorts to become a parallelogram under the action of linear strains €, £,



and shear strain @ as shown in Fig. 2.22(a). Point C moves 1o C’. Let r be the length
of the diagonal OC.

Now, CC’'=CDcos @ +DEsin @ + EC' cos 0
= (g.rcos ) cos 8 + (g.rsin O)sin @ + (@.rsin f) cos O
=(€g.r.cos” 8) + (&, r.sin @) + @.r.sin 8. cos 0
Slm:e strain of the diagonal, gg= CC7r
£g = (£,.c05%6) + (g,.sin’ ﬂ] + ¢ .sin 6. cos 0

1 | S
EE’“ +cos 20) + Ee”“ —-cos 20) + E(psmiﬂ

] I [
= -2-(£J+£}.}+ '2”{"3.:‘5;}"0529 + Etpsm 20 (2.40)
Compare the resulis with bi-axial and shear stresses conditions (Eq. 2.20).

e In a linear strain system, £, = £,.c0s°0 or €, ( 1 +cos 29]
e In a pure shear system and for 8 =45° &£,. = @/2. (Fig. 2.21h)

For maximum and minimum values of strains i.e. for Principal strains, differentiating
with respect to 6 and equating to zero,

ae {]—-(E - £,)25in20 + @.cos20 =0
de
or %{Ex - £,)2sin 26 = ¢.cos 26
¢
or tan 28 = (2.41)
E, €,

Values of principal strains can be obtained in a similar way as for principal stresses.

| 1
Principal strain = 3 (£, +£,) £ (€, ~£,)" +¢* (242)

Mohr's Strain Circle

Comparing Eqs. 2.40 and 2.20, it may be

observed that the Mohr’s circle used for the _,_Ez__i {
stresses analysis can also be used for strain

analysis. The linear strains can be taken along M 26 '__‘_
horizontal axis and shear strain along the vertical o {E c 1

axis, the magnitude of the shear strain taken to T—
be half. Thus in the strain circle (Fig. 2.23),
l -q—E,r—u.i h
0C = 35 ——
] 3 ] H
And  CR = EJ{(E_. ~£,)" +¢°) Fig. 2.23

The construction of the strain circle, when three coplanar linear strains in three

directions at & point are known, is exactly similar to that for the case when three
coplanar stresses ure known (Section 2.5).
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Example 2.11 Figure 2.24(a) shows the strains in three directions p, q and r in

a plane, the magnitudes being 600 x 107°, —150 x 107° and 250 x 10°. Determine the
magnitude and direction of the principal strains in this plane.

q r P

Lt — - 250 R
150ie——L 600 —» o2 (c)

(®)
Fig. 2.24

Assuming no stress in a plane perpendicular to this plane, find the principal stresses
al the poini. Take E = 205 GPa and v = 0.3.

Solution
1 1 1
£g= E{E{ﬁ £ )+ E{Ex—s},}cns 20+ Eq:.*sin 20 (Eq. 2.40)
1 1
€= 5E+8)+ (6~ 8) =600 10
or £, =600 x 10

(1)
1 1
Ey5 = E(ﬁ{l’}x 10%+¢,) + E{ﬂl‘!x 107° — g, Jeos 90° + 59 sin 90°

1 1
-150 x 107° = E(ﬁﬂ[}x 10°+¢,) + 29

or  &+@=-900x10" (i)
1

| 1
€20 = 5 (600x 10°+g)+ E{ﬁmx 107% - g, )cos 24{I“+Eqpsin24{l"

[

250 % 10°¢ = %[6ﬂﬂxlﬂ'6+£yj—ji(6{]ﬂ><m‘f'—£}.]-$m
1 3 3
= Zﬁﬂﬂxlﬂ*‘+ 2 £, -

R4
£,-0.577 ¢ = 133.3 % 10°6 (iii)
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Subtracting (iii) from (ii),
1.577 @ = - 1033 x 10°®

p=-655x10"
£, =-900x10°-(-655x 10 =-245x10°
® 65510
tan 20 = = =0.775 . 2.41
o, -0, (600+245)10°° (Eq. 241)
20=37.8° or 8= 18.9°and 108.9°
.y . 1 1 2, 2
The principal strains = E(EJ +g,)t EJ{E, —€,)" +¢ (Eq. 2.42)

-6 6
= % (600 - 245) % V(600 +245) +655°

= (177%535107°
& =T12x10° and &=-358x10"

E(ve, +&)  205000x107°[0.3 x (=358) +712]
1-v: 1-0.3*

o, = = 136.2 MPa

E(ve, +£)  205000x107°[0.3x 712 - 358]
1-v: 1-0.3°

Solution by Mohr's circle

Mobhr’s circle can be drawn as shown in Fig. 2.23(b) which is self-explanatory.

Major principal strain £;= OF = 712 at 37.8/2 or 18.9° clockwise of plane p

Minor principal strain £ = OF = — 358 at 108.9° clockwise of plane p.
The results are shown in Fig. 2.23(c).

0, = =-32.5MPa

» Stresses on an inclined plane of system with direct and shear stresses are

Oy = O, cos @ +0, sin> @ + Tsin 20

%(ﬂ, +0,) +%(UI =0, )cos 20 + T.5in 26

1 .
To= —E{t:i'Jr —ﬂ'}.}sm23+ TCcos 20

e Incomplex systems of loading, there exist three mutually perpendicular planes,
on each of which the resultant stress is wholly normal. These are known as
principal planes and the normal stresses across these planes as principal stresses.
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* The inclination of principal planes is given by tan 28 =

2t
-0

A ¥

* The magnitude of major and minor principal stresses are given by

1 1 =
0.2= 500, +a}.}¢5J(u, -0,) +47°

1 1
e Maximum shear stress = EJ{D'A —a'y}z +41° = E{U' -0,)

¢ A material acted upon by pure shear stresses on two perpendicular planes will
have a tensile stress equal to the magnitude of the shear stress on the planes at
45 and a compressive stress of the same magnitude on the planes at 135° with
no shear stress on these planes.

¢ Principal stresses from principal strains for 2-D,

E(ve, +§) E(ve, +&,)
o= 0 d T =V

—

¢ Linear strain in an inclined plane,

1 1 |
Eg= §(£’+EJ’]+ -E'(EI—E),}CDS29+ Etpsiniﬂ

* Principal strains = IE(EI +€,)t %\/{EJr - €, )2 +¢?

2.

3.

4,

Review Questions

Show that in a direct stress system, the maximum shear stress in a body is half
the magnitude of the applied stress.

Deduce expressions for stresses on an inclined plane in a body subjected to a
bi-axial stress condition.

Show that shear stress in a body acted upon by two equal perpendicular stresses
is zero.

Show that a body subjected to a pure shear is also acted upon by tensile and
compressive stresses as well.

From first principles, show that a state of pure shear exists in a body subjected
1o equal perpendicular stresses of different nature.

What do you mean by principal planes and principal stresses? Derive the
expression for principal stresses for a body subjected to direct and shear
stresses.

What is Mohr’s stress circle? How is it useful in the solution of stress analysis
problems?

Deduce expression for the linear strain in a body in a direction inclined at
angle & with the x-axis when direct and shear strains along .x- and y-directions
are known.



9.

10.

11.

12.
13.

14.

15.

16.

A piece of material is subjected to two perpendicular tensile stresses of
300 MPa and 150 MPa. Determine the normal and shear stress components
on a plane, the normal of which makes an angle of 40° with the 300 MPa
stress. Also, find the resultant.  (237.5 MPa; 74 MPa ; 248.8 MPa; 22.87)
The stresses on two perpendicular planes through a point are 120) MPa tensile
and 80 MPa compression along with 60 MPa shear. Determine the normal
and shear stress components on a plane at 60° to that of the 120 MPa stress
and also the resultant and its inclination with the normal component on the
plane. (22 MPa; 116.5 MPa; 118.6 MPa; 79.3%)
Determine the position of the plane on which the resultant stress is most inclined
to the normal in a system of two perpendicular compressive stresses of
120 MPa and 180 MPa. Also, find the value of the resultant stress.
(11.5%; 147 MPa comp)
Solve Exercise 9 by Mohr’s circle.
Draw Mohr’s stress circle for a biaxial stress system having two direct stresses
of 30 MPa (tensile) and 20 MPa (compressive). Determine the magnitude and
the direction of the resultant stresses on planes which make angles of (i) 25°,
and (ii) 70° with the 30-MPa stress. Also find the normal and shear stresses on
these planes. (For 25° plane: 21 MPa (tensile), 19 MPa; 28.5 MPa ; 42°;
For 70° plane: 14.2 MPa (comp.), 16 MPa; 21 MPa ; 131.5%
At a point in steel bar the stresses on two mutually perpendicular planes are
10 MPa tensile and 5 MPa tensile whereas the shear stress across these planes
is 2.5 MPa. Determine, using Mohr’s circle, the normal as well as the shear
stresses on a plane making an angle of 30° with the plane of the first stress.
Also, find the magnitude and the direction of the resultant stress on the same
plane. (10.9 MPa; 0.9 MPa; 10.95 MPa; 5°)
The normal stresses at a point in an elastic material are 100 MPa and 60 MPa
respectively at right angle to each other with a shearing stress of 50 MPa.
Determine the principal stresses and the position of principal planes if (i) both
normal stresses are tensile, and (ii) 100 MPa stress is tensile and 60 MPa
stress is compressive. Also determine the maximum shear stress and its plane
in the two cases.
(133.8 MPa tensile, 26.2 MPa tensile, 34.1" and 124.17, 53.8 MPa, 79.1°;
114.3 MPa tensile , 74.3 MPa comp., 16" and 106, 94.3 MPa, 61v)
The resultant stress on a plane BC at a point in a material is 240 MPa tensile
inclined at 30° to the normal to the plane as 180 MPa
shown in Fig. 2.25. On a plane AB
perpendicular to plane BC, the normal
component of stress is 180 MPa. Determine 240 MPa
the 30°
(i) resultant stress on plane AB
(1) principal stresses and principal planes
(i1) maximum shear stress.
(216.3 MPa; 56.5% 314.6 MPa, 73 MPa; c
41.7° 131.7°; 120.8 MPa; 86.7°, 176.7%) Fig. 2.25

B
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17.

18.

19.

A piece of material is acted upon by tensile stresses of 50 MPa and 25 MPa at
right angle to each other. Determine by ellipse of stress, the magnitude and
direction of the resultant stress on a plane at 45° to the 50 MPa stress.

(39.5 MPa, 18 with normal stress, 27° with 100 MPa stress)
The stresses at a point in three coplanar directions are measured as o, =
80 MPa (tensile), gy, = 400 MPa (tensile) and a,5, = 200 MPa (compressive)
where subscripts indicates the relative angular position of the planes in degrees.
Determine the principal stresses and the planes.
[449 MPa (tensile) at 14° to 400 MPa and 251 MPa (compressive) at 16” to
200 MPa stress]
The readings of a strain gauge rosette inclined at 45° with each other are
4x 10% 3 x 10%and 1.6 x 107°, the first gauge being along x-axis. Determine
the principal strains and the planes.

(4.04 x 10°°, 1.58 x 107 ; 5° and 95°)



STRAIN
ENERGY ==
AND THEORIES

OF FAILURES

3.1 INTRODUCTION

When an elastic body is loaded within elastic limits, it deforms and some
work is done which is stored within the body in the form of internal energy.
This stored energy in the deformed body is known as strain energy and is denoted
by U. It is recoverable without loss as soon as the load is removed from the
body. However, if the elastic limit is exceeded, there is permanent set of
deformations and the panticles of the material of the body slide one over another.
The work done in doing so is spent in overcoming the cohesion of the particles
and the energy spent appears as heat in the strained material of the body. The
concept of strain energy is very important in strength of materials as it is
associated with the deformation of the body. The deflection of a body depends
upon the manner of application of the load, i.e. whether the applied load is
gradual, sudden or impact. If a body is acted upon by sudden or impact load, the
instantaneous deformation is much more as compared to when the load is gradually
applied. In such cases, strain energy is a convenient tool to solve problems associated
with deflections.

A material is considered failed when a permanent or non-recoverable -
deformation occurs. There is either direct separation of particles as in case of
brittle materials or slipping of particles as for ductile materials where
plastic deformations also takes place. Machine components and structural members
are generally designed on the hypothesis that the material will not yield during the
expected loading conditions. For example, in a uniaxial loading, a machine component
will be safe as long as the stress produced by the load is less than the yield stress of
the material. In a biaxial loading system, it is not possible to predict directly by the
above criterion. In such a case, it may require to find the principal stresses at any
given point. Thus different criteria may be required to consider the safety of a



component. The criteria used under various load conditions and type of materials are
known as theories of failure.

|

When a gradual or static load is applied to a body of an
elastic material, the internal resistance or the stress
increases linearly with the increase in deformation
(Fig. 3.1) and therefore, the load-elongation or resistance-
deformation diagram is a straight line within elastic limits.
The maximum or the final resistance of the body is equal
to the applied load. The work done in straining a material
is equal to the area under the diagram at any instant or is

LOAD —=

the work done against the average resistance acting ELONGATION —»
throughout. Fig. 3.1
Thus strain energy, U = Average resistance X Elongation = % P.A (3.1)

The strain energy may also be expressed in the following forms:

U= % (cA). (e.L)= %.U.E.AL: 12 * stress X strain X volume (3.2)
or U= l . E+ volume = g ¢ volume (3.3)
2 E 2E
P P'L
or U= —.—.AL= (3.4)
A 2E JAE

Resilience

It is the ability of a material to regain its original shape on removal of the applied
load. It is defined as the strain energy per unit volume in simple tension or compression
and is equal to 0%/2E. It is also referred as strain-energy density and denoted by u.

Distinction between strain energy and resilience is hardly followed by authors and
each is referred in place of the other.

Proof Resilience

[t is the value of resilience at the elastic limit or at proof

stress, It is also known as the modulus of resilience or  agboeeeoo oo

resilience modulus.
Strain-energy density,

1 , I 5

i = = X slress X strain (From Eq. 3.2) i
! | E > . ;

= —0.t=—Feeg=—.¢" (i) !
2 2 2 :

Now, consider an element of area of width £ located
under the stress-strain diagram (Fig. 3.2). Fig. 3.2
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Elemental Area = 0.de = Ec.de
Let g, denotes the strain corresponding the elastic limit of stress g, .

£ 1 F
Then, area under the curve upto elastic limit = EI Ede = E[%I = gﬁf which
0
is same as (i) above. Thus proof resilience is
the area under the stress-strain diagram upto

elastic limit.

Modulus of Toughness

It is the strain energy per unit volume required
to cause the material to rupture. It is the area
under the stress-strain diagram upto rupture /
point (Fig. 3.3). Thus it is a measure of the A
ability of a material to absorb energy before STRAIN
fracture. Fig. 3.3

Modulus of toughness

Rupture

STRESS

o]

3.3 STRAIN ENERGY (THREE-DIMENSIONAL
STRESS SYSTEM)
Consider a unit cube acted upon by three principal stresses o

0,, 0, and o, (Fig. 3.4). Let the corresponding strains be
£, & and &;. Then for gradually applied stresses,

Strain energy,
I 1 1
U= EGIEI + 50’352'1' Eﬂ'sf_j o o
=1s ["I“""’z“"’!] Fig. 3.4
2 E
. inz[n*l-vcrg_—m,] N _I_Us[crj-va, —vu'z_)
2 E 2 E

I. ) T "
= —Z—E—{ﬂ;“ +03 +07 — 2V(0,0, + 0,0, +050,) per unit volume  (3.5)

e For a system with equal principal stresses o, = 0, = 0; = 0,

U= ——(c®+0° +az—2v(m+m+m}=£[l—2v1 (3.6)
2B 2E

As  E=3K(l-2v)

3o’ o’

Thus, U = 1—2vy =2 9
us x3KkA—2m =5k G0

e For a two-dimensional system

= EIE{UE +03 — 2v0,0,) per unit volume (3.8)
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3.4 SHEAR STRAIN ENERGY

Consider a block with dimensions L, b and h as
shown in Fig. 3.5. Assume it to be rigidly fixed to
the ground. A shear force P is applied gradually
along the top surface.

Strain energy, U/ = Work done in straining = % X
Final couple x Angle turned
= % x Final force x h X ¢
= % »% (Shear stress % Area) x h X ¢
- %.L(L.b},h,-é ....... (As G = t/por ¢ = 1/G)
s
=—.(L.b.h
G ( )
2
= — X Volume (3.9)
2G )
or Shear strain energy per unit volume = % (3.10)

It is similar to o>/2E for direct stress.

3.5 SHEAR STRAIN ENERGY
(THREE-DIMENSIONAL STRESS SYSTEM)

Consider a unit cube acted upon by three principal stresses o, @, and o, as before.
The total work done by the external forces cause
¢ change of volume due to application of direct stresses and
s distortion due to shearing stresses which do not affect the volumetric change.
Thus,
Total strain energy = Volumetric strain energy + Shear strain energy
Now total strain energy,

U= ﬁ (nf ¥ ag + a§ - 2v(0,0, + 0504 + 030,) per unit volume (Eq.3.5)

Volumetric strain energy,

1 . .
U, = — Average stress X Volumetric strain

v

1{0,+0,+0 -
_[Q_-l] x G130 02V e Bq. 123)

=2 3 E

N é(ﬂ'l""-"z +03) (1-2v) G.1D
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Thus, shear strain energy

]

1]

I 1
= E{ﬂf +03 +03 —2V(0,0, + 0,0, +030,) - E{a, +c:r1+4::--:,,)2 (1-2v)

L
6E

[3(07 + 03 +07) - 6V(0,0, + 0,03 +030,)) -

é“dﬁ +03 + 03 +2(0,0, + 0,0, + 0,0,)} (1-2v)

1
E[B{af +02 +0%)-6V(0,0, + 0,0, +0:0,) - (0F + 0% +67) -
2(0,0, + 0,03 +0,0,) + V(07 + 03 +03) +4(0,0, + 0,0, +0;0,)]

L[(a,: +03 +03)3-1+20) — (0,0, + 0,0, + 60,6V + 2 — 4v)]

6E

14+v 3 3 2

E[E(ﬂ] +ﬂ'2 +U3 )= E(Ulﬂlz +Crzﬂ'3 + 00, }]
l+v 2 2 2

—[{0,-0,) +(0,—-0,) +(0, -0

ﬁxZG{Hv][{ | —0y)" +(0, —04) +(0y-0,)7]

1

E[(u::r,-az;.’+(q:r2-aar:,f+(4::r3-.::r,f] (3.12)

For a two-dimensional stress system, the relation for shear strain energy reduces
1 1

to —I(q; -0,) +(0,)" +(-0))°] =§{U|2 +0," —0,0,) (3.13)

Example 3.1 Compare the strain energies of the bars shown in Fig. 3.6 {ii),
(ifi), (iv) and (v) with the strain energy of bar (i) for a constant load P in all cases.
Smaller cross-sectional areas are half of the larger cross-sectional areas.

e N e B s M e

i N e N
A2 Al2 A2 A2

(i) (i) (i) (iv) (v)
Fig. 3.6

<
5 —]
S
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Solution Let A = area of larger cross-section

a = area of smaller cross-section

L = Total length of bar

L, = length of section with larger area
L, = length of section with smaller area

Thus

As the load is the same in all cases,

Stress in the larger section, o= P/A
P P

Stress in the smaller section, 6, = — = LY 20
a aA 12

_ : ) o’
(i)  Strain energy of bar (i), U, = -iE AL

(ii) Strain energy of non-uniform section of bar of Fig. 3.6(ii),
U = Strain energy of iarger section + strain energy of smaller section

2 X
T A+ 4,
2E 2E
o’ (20)°
ratio - 2E A o4 2at, vdat, _L,+21,
T T T L L
Z AL
2E
Thus, U/U, = 0.9+2%0.1=1.1
Similarly,
(i) UU,=2/3+2x13=133 (iv) UU,=05+2%05=1.5

(v) UU,=0+2x%x1=2

Example 3.2 Compare the strain energies of the bars shown in Fig. 3.6 (ii),

(iii), (iv) and (v) with the strain energy of bar (i), when the bars are subjected to
maximum permissible stress.

Solution

In this case, the maximum value of stress in all the cases is owhich means

that in the first case the maximum stress is uniform, whereas in other cases the maximum
stress is in the sections with smaller cross-sections.
(i) Bar of Fig. 3.6 (i):
Stress in the uniform section is .

2

Strain energy, U, = g x AL

(i) Bar of Fig. 3.6 (ii):
Stress in the smaller section = maximum permissible stress = ¢

. . a
Stress in the larger section = a‘.; =—

2E

a

Strain energy of non-uniform section of Fig. 3.6(ii),



Strain Energy and Theories of Failures ' - ‘

U = Strain energy of larger section + strain energy of smaller section

(0/2) o’
= IA'L + _l *
2E SR TR.
“’2";}' AL, + f—E.a.Lﬂ 2%’!1 + al,
Ratio = = =

9] 2aL
~_ AL
2E

L
4L

(L, +2L,)= l(1|:|.§t+ 2x.1)=0.275
Similarly for other bars, 4

(iii) UE = i-[{].ﬁﬁ'? + 2 x 0.333] =0.333

(iv) EU_I = %[ﬂ.5+2x0.5] =0.375 (v) {%:%[ﬂ_p 2;..“] =05

Example 3.3 Compare the strain energies per unit volume of the bars shown in
Fig. 3.6 (ii), (iii), (iv) and (v) with the strain energy per unit volume of bar (i} when
the bars are subjected to maximum permissible stress.

Solution
(i) Stress in the uniform section = maximum permissible stress = o

0.2

Strain energy per unit volume, U, = 2

(ii) For non-uniform section of Fig. 3.6(ii),
Stress in the smaller section = maximum permissible stress = @
o

Stress in the larger section = 0. £}

a e
e
Volume = A.L, +al,

Strain energy of non-uniform section of Fig. 3.6(ii)

(g/2)* a’
= ALy +—.a.
TR T
Strain energy per unit volume of non-uniform section,
(072)* o’ I
A.L, +al, 2E| 2a.L,+adl, 2E\ 2L, +1L,
o’ [L,,.fz+ Lt,]
2E\ 2L, +
Ratio, U _ at+L, _(LJ2+L)/L _ 0.9/2+0.1 0289
U, o’ QL y+ L)L 2x09+0.1

2E
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Simi]a:]y.
iy L= 0.6667/2+0.3333 —04 (v)
U, 2x0.6667 +0.3333
U 02+l
v) —= =
U, 2x0+1

U

U,

Strength of Materials

0.5/2+05 _

2x05+05

Example 3.4  The cross-sections of two bars A and B made up of the same material

and each 320-mm long are as follows:

e Bar A: 24-mm diameter for a length of 80 mm and 48 mm for the remaining

240 mm

* Bar B: 24-mm diameter for a length of 240 mm and 48 mm for the remaining

80 mm

An axial blow to bar A produces a maximum instantaneous stress of 160 MPa.

Determine the

(i) maximum instantaneous stress produced by the same blow 1o bar B.
(ii) ratio of energies stored by the two bars when subjected to maximum permissible

Siress.

(iii) ratio of energies per unit volume of the two bars when subjected to maximum

permissible stress.

Solution  (Refer Fig. 3.7.)

For the same blow to bar B, the strain energy
produced by the blow should equal to that
produced by the blow to the first bar.

In bar A,

Maximum instantaneous stress in the smaller
cross-section = 160 MPa

Maximum insmnmnmus stress in the larger

cross-section = 160 x(i:] =40 MPa

In bar B,

Let maximum instantaneous stress in the
smaller cross-section = @

Then maximum instantaneous stress in the
larger cross-section = /4

Bﬁrm]

24 mm |

l+—— 240 mm

. }_.

Strain energy of bar A = strain energy of bar B

4{}2}( 48 ><24{I+—]602>c 24)- %80
2E %3 — (48)° °F —( )
_ (o 14)?

2E

Dividing throughout by — >< 24% x 3E"

T

E
E
(=]
&
' E
E
1r8 ‘lr
e =
48 mm 48 mm
(Bar A) (Bar B)
Fig. 3.7

w2 (48)2 X80 + —— x = (24)% x 240
3 5EX3
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1
40°(12+16) = o* E+3) or o = 117.4 MPa

(i1) Let maximum stress in the smaller cross-section = &
Then stress in the larger cross-section = /4
Ratio of strain energies

{JM)E E 48 xEn+ o’ x—(24)° %240
Uy _ oF *g @ x80+p i
U, (o147

n 2
E )(-I[*'-IB] X240+-—-x—{24} x 80
2

o
Dividing throughout by SE*T (24} x 80

Uy  (1116)x2% +3
U, ne2*x3+l1

(iti) The ratio of strain energies per unit volume of two bars for the same maximum
stress in the smaller cross-sections,

Volume of bar A = -—-{414}‘:12 x240+ [24} x80 mm?;

=1.857

T
Volume of bar B = T (48)° x 80 + 7 (24}1 %240 mm>:

(/4 J":{4&3:; 80 + ix”{mf 240 i
— X
v, | 2£ 2E 4 48% x 80+ 24% % 240
U, [wr4? 2 ] 4/
AL T gy 240+ T x T (24)? x80 . -
2E 4 2E 4 48° % 240+ 24* x 80
22x3+1
= ].ESTX-ﬁ =1.857x1.857 =3.448
+

Example 3.5 A steel rope lowers a load of 9.5 kN with a uniform velocity of
750 mm/s. When the length of the rope unwound is 8 m, it suddenly gets jammed and
the load is brought to a halt. Determine the stress developed in the rope due to sudden
stoppage and the maximum instantaneous elongation if the diameter of the rope is
20 mm. E for steel = 205 GPa.

It
Solution A= E.(zn)z =100z mm?

Wyl 9500% 7507

K.E. of the load = 22 = 29810 =272 362 N.m

o2
Strain energy gained by the rope = EAL = mxlﬂﬁﬂxﬂﬂm‘

=6.13 02 N.m



When the rope is suddenly gets jnmed, its kinetic energy is converted into strain

energy.
Thus equating the two, 6.13 ¢* =272 362 or ¢ =210.8 MPa
oL 210.8x8000
Maximum instantazeous elongation = 7~ = ~5ps 00~ — 8.226 mm

3.6 STRESSES DUE TO VARIOUS TYPES OF LOADING

A leading may be gradual, sudden or by impact (shock). The case of gradual loading
has already been discussed in Section 3.2,

Suddenly Applied Load

When a load is applied suddenly, the load W is the same throughout whereas the internal
resistance set up in the body increases linearly with the deformation, i.e. it is zero in the
beginning and maximum (equal to applied load) when the deformation is A.

1
Strain energy stored in the material = Average resistance X Elongation = 5 (cA). A
Work done by the load = W. A

1 2w
Equating the two, 3 (cA)LA=W.A or o= - (3.14)

i.e. the maximum stress induced in the body is twice the stress induced by the load of
the same magnitude applied gradually.

Impact or Shock Load

Let a load W drop through a height h before it commences to deform the body. After
falling on the collar of the body as shown in Fig. 3.8, a few oscillations of the collar
take place and finally the load takes up the same position as is taken by gradually
applied load if the limit of proportionality is not
exceeded. Of course, the instantaneous extension
and the stress are much greater than the steady state
values.

Work done (potential energy loss) by the load =
Strain energy stored in the material

2

Wih+ A) = :_E x AL (Eq. 3.3)

where o'is the stress due to a gradually applied load T

AU LTI

P that causes the same deflection A.

E 2E

ol o’ [ [ ]
or W[I:+-—]=—— x AL ' _:-,-f!

Multiplying throughout by 2E/AL and
rearranging, Fig. 3.8
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2 (W) _2WER
A AL

This is a quadratic in o and the solution is given by,

w1 lfawy WEL w 2AEh

A WL
It h =0, o=2W/A, i.e. the case of a suddenly applied load.

Example 3.6 A 3.2-m long bar of 16 mm in diameter hangs vertically and has a
collar antached at the lower end. Determine the maximum stress induced when a
weight of 80 kg falls from a height of 32 mm on the collar.

If the bar is turned down to half the diameter along half of its length, what will be
the value of the maximum stress? E =205 GPa.

Solution A= (m/4).16*=64m h=32mm; W=80x981=7848N;L=32m

o= 21"\ Wi |F e 784.8 x 3200

w 2AER 784.8 2 x64m x 205 000 x 32
I +4/1 = I+.4]1+

=3.903(1 + 32.4) = 1304 MPa

Note that with only a 32-mm drop the maximum stress is 32.4 times more than that
for static stress.

Now, diameter of the reduced section = 16/2 = 8 mm

Area of the reduced section = (/4).8’ = 16 &

When the bar is turned down to half the diameter along half of its length, let P be
the equivalent load to induce the same maximum stress,

P x 1600 Px1600
“ A= 167 x 205000 ' 647 x 205000 = 0-000 194 P=kpP

...{Taking k = 0.000 194)

Using the energy equation

1
Wih+A==PA

2
1
Wih + kP) = EE kP
P2 —2WP - 2Wh/k =0 {multiplying throughout by 2/k)
Solving,
W +J(-2W)? — A(-2Whik) , 2x784.8x32
P= 2 =734_8+ ?84.3 +W =1'ﬁ ENN

The maximum stress (in the smaller section) = 16 894/167 = 336 MPa
The maximum extension = kp = 0.000 194 < 16 894 = 3.28 mm
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Example 3.7 A lift is operated by three ropes each having 28 wires of 1.4 mm
diameter. The cage weighs 1.2 kN and the weight of the rope is 4.2 N/m length.
Determine the maximum load carried by the lift if each wire is of 36 m length and the
lift operates (i) without any drop (ii) with a drop of 96 mm during operations.

E (rope) = 72 GPa and allowable stress = 115 MPa

T
Solution Total area of cross section, A = E'U 4y’ x3%28 = 129.3 mm?

The maximum stress occurs at the top of the wire rope where the weight of the
rope is maximum,

Thus maximum load = weight of cage + weight of rope
=1200+3x36 x42=1653.6 N

1653.6

129.3

Equivalent static stress available for carrying the load = 115 - 12.8 = 102.2 MPa
Thus, equivalent static load that can be carried,
P,=1022x1293=13214N

_ 102.2 % 36 000
The extension of the rope, A = 72000 =51.1 mm

Initial stress in the rope, O = =12.8 MPa

|
(1) With no drop, Let W be the weight which can be applied suddenly, W. A= 3 P.A

or W=13214/2 = 6607 N or 6.607 kN
(ii) With 96 mm drop, Let W be the weight,

| |
Wih+A)= EFJ&. or W[%+51.1)=§x13ildxﬁl+]
or W=2205N or 2.295kN

Example 3.8 A vertical composite tie bar rigidly fixed at the upper end consists
of a steel rod of 16-mm diameter enclosed in a brass tube of 16-mm internal diameter
and 24-mm external diameter, each being 2 m long. Both are fixed together at the
ends. The tie bar is suddenly loaded by a weight of 8 kN falling through a distance of
4 mm. Determine the maximum stresses in the steel rod and the brass tube.

E. = 205 GPa and E,= 100 GPa

Solution Refer Fig. 3.9.
A, = (m/4)16* =64 m, A, = (mld)24* - 16 =801
Let x = Extension of bar in mm
E .x E .x

o= ado, =y

2 2
o
Strain energy of the bar g 2E, b

&
Elx? Elx*
=g ALt——AL
L'2E, " [2E,
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_EJ.rzA +E"I2
2L f 2L A

BRASS

52
= E{Eﬁ: +EA)
2
T3 3000 (205 000 % 64 + 100 000 x 80m)

=16 588 x> N.mm

Potential energy lost by the weight | —
= Wh + x) = 8000 (4 + x) NNmm 4mm |

Equating the two, 16 588 x* = 8000 (4 + x) e _“‘__

or x*-04823x-19292=0 A

STEEL
X1
3

B kN

1
or  x= (048234 J0.4823% +4x1.9292)

Fig. 3.9
= 1.6508 mm
o = Ej,..I _ 205 000 x 1.6505 = 169.2 MPa
¥ L 2000 )
E.x 100000x1.6505
0, == = ——5s = 82.54 MPa

3.7 THEORIES OF FAILGRES |

As mentioned in the introduction, in simple systems with only one kind of stress, it is
easy to anticipate the failure, but in complex stress systems in which direct as well as
shear stresses act, it is not easy to do so.

The main theories of failure are discussed below. @, &, and & denote the principal
stresses in any complex system and o the tensile stress at the elastic limit in simple
tension.

(i) Maximum Principal Stress Theory (Rankine's Theory)

According to this theory the failure of material will occur when the maximum principal
stress in the complex stress system attains the value of the maximum stress at the
elastic limit in simple tension. Thus this theory states that the maximum principal
stress must not exceed the working stress for the material.
Let o0, 0, T=Direct and shear stresses on given planes in the complex system
and 0©; = Maximum principal stress

1 1 > 3
Then o, = E(Uy +4:er]+-2-‘!|:4::-'_'F -0,) +4t
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It should not be more than maximum stress in simple tension o,

or in the limit, o, = 0

This theory is found to give good results when applied to brittle materials such as
cast iron.

(ii) Maximum Shear Stress Theory (Guest’s and Tresca's Theory)

This theory states that the failure occurs when the maximum shear stress in the complex
system attains the value of the maximum shear stress at the elastic limit in simple
tension.

The maximum value of shear stress in terms of principal stresses o; and o,

] 1
= 5(0,-0,) = EJ(.::}_ -6,)* +47°

In a simple direct stress system, the maximum shear stress = ¢ /2

Thus (0, — 7,)/2 must not be more than o/2,

or in the limit, 0, - =0

However, this applies to values of principal stresses of opposite type, i.e. if one is
tensile, the other is compressive. When the principal stresses are alike, either both are
tensile or compressive, then according to the above relation, if o, is the maximum
principal stress, it will be more than the limiting value of stress & which is not possible.
In that case, the higher value of principal stress must be less than the limiting value .

In the limit, 0, =0 or - O

This theory is preferred in case of ductile materials such as mild steel.

(iii) Maximum Principal Strain Theory (St. Venant's Theory)

According to this theory, the maximum principal strain in the complex stress system
must be less than the elastic limit in simple tension if there is to be no failure.
In the limit,
e = G'I—V{J'z -VO‘S :E or o
| E E I
This theory is not used in general as it is found to give satisfactory results in
particular cases only.

(iv) Maximum Strain Energy Theory (Haigh's Theory)

This theory is based on the principle that the work done in bringing a body to a
particular state is independent of the method applied to bring the body to that state.
According to this theory, the failure takes place when the strain energy per unit volume
of a body reaches the value of strain energy at elastic limit in simple tension.

In the limit,
1 o’

Z—E-u:rI3 +0] +0; - 2V(0,0, +0,0, +0,0,) = T (Eq. 3.5)

2 2 2 _ g, |
or o) +0, +0; va‘az +0,0, +{I3{1'|] =0

—Vﬂ'z ‘-":"{T; =0

This theory is found satisfactory for ductile materials.
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(v) Maximum Shear Strain Energy Theory (Mises’ and Henkey’s Theory)

This theory states that the failure takes place when the shear strain energy in a complex
system becomes equal to that in simple tension.
Shear strain energy in a complex system

= 5510~y +(0,-0,)" +(0;-6))’] (Eq. 3.12)

Shear strain energy in simple tension is found by inserting 0,= ¢, 6, =0and o;=0
in the above expression, i.e.
Shear strain energy in simple tension
2 2

(-0 +(0-0F +(0-0) )= =T
T 126

Therefore, in the limit
l(o, - 0,) +(0, -0,)* +(0, -0,)* 1= 207

For a two-dimensional stress system, the above relation may be reduced to
(0, -0,) +(0,)" +(-0))’] = 20"

2 2 .
0, +0; -0,0,=0

This theory gives good results when applied to ductile maternials.

As shear stress and shear strain energy theories depend upon the stress differences,
a material has no chance of failure if the principal stresses are of the same nature and
magnitude since the difference will be negligible. Thus these theories should not be
applied in such cases.

Example 3.9 Principal stresses at a point in an elastic material are 100 MPa
tensile, 50 MPa tensile and 25 MPa compressive. Determine the factor of safety against
failure based on various theories. The elastic limit in simple tension is 220 MPa and
Poisson’s ratio 0.3.

Solution
(1) Maximum principal stress theory

Failure takes place when the maximum principal siress reaches the value of
maximum stress at the elastic limit.
Thus maximum principal stress, = 100 MPa
Factor of safety = 220/100 = 2.2

(ii) Maximum shear stress theory
o= 100 -(-25) =125 MPa
Factor of safety = 220/125=1.76

(iti) Maximum principal strain theory

g, —vo, =va, =100-0.3 x 50 - 0.3 x (-25) = 92.5 MPa

Factor of safety = 220/92.5 = 2.37
(iv) Maximum strain energy theory

SR S S B
o= oy +0; +0] - V(6,0, + 0,0, +0,0,)



!" . stengthof Materials

= 1007 + 507 + (=250 - 2 x 0.3 x [100 x 50 + 50 x (=25) + (-25) x 100]
=13 125
o = 114.6 MPa
Factor of safety = 220/114.6 = 1.92
(v) Maximum shear strain energy theory
20% = (0, - 0,7 +(0, -0;)* +(0,-0,)°
= (100-50)% + (50 + 25)% + (=25 -100)* =23 750
o2=11875 o = 108.97
Factor of safety = 220/108.97= 2.02

Example 3.10 A bolr is acted upon by an axial pull of 16 kN alongwith a

transverse shear force of 10 kN, Determine the diameter of the bolt required according
to different theories. Elastic limit of the bolt material is 250 MPa and a factor of
safety 2.5 is to be taken. Poisson’s ratio is 0.3.

Solution The permissible stress in simple tension = 250/2.5 = 100 MPa

Let the required area of cross-section and the diameter of the bolt be a and d
respectively under different theories.

The applied tensile stress = 16 000/a
The applied shear stress = 10 000/a

1 1 >
Maximum principal stress, o, = E{GF +ﬂ'x)+§.,j(a':_, -o.) +47?

! 1
= (16 000)+ - 16 0007 +4x10 0007 ...(0,=0)

= (8000 + 12 806)/a = 20 806/a (tensile)
Minimum principal stress, o,= (8000 - 12 806)/a = 4806/a (compressive)
(1) Maximum principal stress theory:
Maximum principal stress, ¢, = 20 806/a
Thus 20 806/a = 100

T
7 d? =208.06 or d=16.28 mm

(ii) Maximum shear stress theory
Maximum shear stress = [20 806 — (— 4806))/2a = 12 806/a
Maximum shear stress in simple tension = 100/2 = 50 MPa
12 806/a = 50

I
T d?=256.12 ord = 18.05 mm
(iii) Maximum principal strain theory
0, —vo, —vo, =[20806 - 0.3 x (-4806)la=222478/a ...(0y=0)
22 247.8/a = 222,48

T
':le = 22248 or d = 16.83 mm
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(iv) Maximum strain energy theory

02 +02 +02 - 2V(0,0, + 0,0, +0,0,) = 07

[20 8062 + (—4806)° — 2 x 0.3 x 20 806 x (—4806)]/a = 1007
a=227.16 mm?*

T
7 d* =227.16 or d = 17.0 mm
(v} Maximum shear strain energy theory
(6, -0,)* +(0, -0,)* +(0, -0,)*] = 26°

[(20 806 + 4806)* + (—4806)° + (=20 806)* )/a® = 2 x 1007
a® = 55 598 or a = 235.8 mm?

T
or Idz =235.80rd=17.32 mm

3.8 GRAPHICAL REPRESENTATION OF THEORIES

OF FAILURES

In a two-dimensional stress system, the limits of principal stresses according to different

theories can be shown graphically as under:

In a two-dimensional system, o, is taken to be zero and the values of principal
stresses 0y and o, are taken along x- and y-axes respectively. Positive values of g, are
taken towards right of the y-axis and negative towards left. Similarly, positive values
of o, are taken upwards and negative downwards of the x-axis. The elastic limit &

may be taken to be the same both in tension as well as in compression.

5. Maximum shear strain
4. Maximum strain v energy theory
energy theory | -
i

2. Maximum shear
stress theory

3. Maximum principal
strain theory

1. Maximum principal
stress theory
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Maximum principal stress theory According to maximum principal stress
theory, the maximum principal stress g; (or &;) must not exceed the elastic limit o.
Thus maximum value of o; and o, can be
0,=0,0,=0,0,=—-0 and 0,=-0
This provides a square boundary ABCD as shown in Fig. 3.10

Maximum shear stress theory For alike type of stresses when both are tensile
or compressive i.e. both lie in first or third quadrant and the stress in the third
perpendicular plane is assumed zero,

o, =(0-0)=g0

Similarly, 0, =0,0=—0 0f 0,=—0
These values generate the boundary lines FC, CG, HA and AE *u the first and
third quadrants.

When the principal stresses are of opposite type, i.e. if cue is tensile, the other is
compressive, then
g -0,=x0

If o, is assumed negative, it can be written as

Oi-(-®)=+0 or O, +0,=+0-
This provides a straight boundary EF ir. the fourth quadrant.
When o, is assumed negative, the equation will be,

(~O)-0y=-0 or -0, -0,=-0C
This provides the boundary G/t in the second quadrant.
Thus the boundary for this crterion i1s AEFCGHA

Maximum principal strain theory In case of two-dimensional principal strain
theory, we have

g, -V0, =%0
For like principal stresses, the limits are provided by

6, -vo, =0, 0,-V0, =0, 0,-V0, =-0 and 0, -v0, =-0
For like principal stresses, the lines generated are FP, PG, HR and RE.
For unlike stres ses, the lines are GQ, QH, ES and SH respectively in a similar way.

Maximum strzin energy theory In maximum strain energy theory, the equation
in two-dimensicnal system is

o} +0; ~v0.0, =0
which is the equation of an ellipse with axes at 45° to the axes. It passes through the
points EFGH.
Maximum shear strain energy theory In this, the equation in the two-
dimensional svstem is

ol +0l-0,0,=0"
which is again an equation of ellipse and is plotted in the figure.
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'-“:’-;*.:?& Summary
ﬂb\f

* The work done by the load in straining the material of a body is stored within it
in the form of energy known as strain energy.
* Resilience is defined as the strain energy per unit volume in simple tension or

compression and is equal to 0°/2E .

» Proof resilience is the value of resilience at the elastic limit or at proof stress. It
is also known as the Modulus of Resilience.
* Modulus of toughness is the strain energy per unit volume required to cause the
material to rupture. It is the area under the stress-strain diagram upto rupture point.
2

1 1
e Strain energy, U= 3 PA= 7 X stress x strain X volume = 3E X volume

s Strain energy per unit volume (3-D),
1
U= 52(0] +0; +05 -~ 2(0,0, +0,0; +0,0))

2
T
¢ Shear strain energy per unit volume = 3G

¢ Shear strain energy per unit volume (3-D)

l *
U= el -0,) +(0,-0;)* +(0; —0,)]

* Maximum stress induced in a body due to suddenly applied load is twice the
stress induced by the load of the same magnitude applied gradually.

. ) w 2AEh
* In case of impact or shock loading, o = Y L+ /14 i

* Various theories of failure are:
(i) Maximum principal stress theory (Rankine’s theory)
(ii) Maximum shear stress theory (Guest's and Tresca's theory)
(ili) Maximum principal strain theory (St. Venant's theory)
(iv) Maximum strain energy theory (Haigh's theory)
(v) Maximum shear strain energy theory (Mises’ and Henkey's theory)

Review Questions

1. What is strain energy of a matenal? Derive the expressions for the same in
different forms.

2, Define the terms: resilience, proof resilience, modulus of resilience.

3. Show that the proof resilience is the area under the stress— strain diagram upto
elastic limit of a material.
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4.
5.
6.
7.

8.
9.
10.
11.

12.

13.

14.

16.

Derive expressions for the strain energy in a three-dimensional stress system.
What is shear strain energy? Find its value per unit volume of the material.
Derive the relation for shear strain energy for a three-dirensional stress system.
What is the value of maximum stress induced in a body when the load is
applied suddenly?
Deduce the relation for stress in case of impact and shock loading.
What are the main theories of failure for a matenial? Explain their relative use.
Give an account of graphical representation of various theories of failure.
A load of 22 kN is lowered by a steel rope at the rate of 750 mm/s. The diameter
of the rope is 28 mm. When the length of the rope unwound is 12 m, the rope
suddenly gets jammed. Find the instantaneous stress developed in the rope.
Also calculate the instantaneous elongation of the rope. E = 205 GPa.

(187.1 MPa, 10.95 mm)
A weight of 2 kN falls 24 mm on to a collar fixed to a steel bar that is 14 mm
in diameter and 5.5 m long. Determine the maximum stress induced in the bar.
E, =205 GPa. (166 MPa)
A weight of 800 N falls 30 mm on to a collar fixed to a steel bar of 1.2-m
length. The steel bar is of 24-mm diameter for half of its length and 12 mm for
the rest half. Determine the maximum stress and the extension in the bar.
E, =205 GPa. (347.7 MPa; 1.272 mm)
A lift is operated by two 20-m long ropes and consisting of 30 wires of
1.5-mm diameter. The weight of the cage is | kN and the rope weighs 3.6 N/m
length. Determine the maximum load that the lift can carry if it drops through
120 mm during operations. E (rope) = 78 GPa and allowable stress = 125 MPa.

(1.188 kN)

A vertical tie rod consists of a 3-m long and of 24-mm diameter steel rod
encased throughout in a brass tube of 24-mm internal diameter and 36-mm
external diameter. The rod is rigidly fixed at the top end. The composite tie
rod is suddenly loaded by a weight of 13.5 kN falling freely through 6 mm
before being stopped by the tie. Determine the maximum stresses in steel and
the brass. E, = 205 GPa and E, = 98 GPa. (143.8 MPa; 68.76 MPa)
An axial pull of 20 kN alongwith a shear force of 15 kN is applied to a circular
bar of 20 mm diameter. The elastic limit of the bar material is 230 MPa and the
Poisson’s ratio, v = 0.3. Determine the factor of safety against failure based on
(a) maximum shear stress theory
(b) maximum strain energy theory
(¢) maximum principal strain energy theory
(d) maximum shear strain energy theory (2;2.3; 2.37; 2.2)



SHEAR
FORCE AND
BENDING MOMENT

4.1 INTRODUCTION: -

A structural element which is subjected to load transverse to its axis is known as a
beam. In general, a beam is either free from any axial force or its effect is negligible.
Analysis of beams involves the determination of shear force, bending moment and
the deflections at various sections. This chapter deals with the finding of shear force
and bending moment at a section of different kinds of beams. Analysis of beams to
find the deflections is dealt in a later chapter.

Usually, a beam is considered horizontal and the load vertical. Other cases are
considered as exceptions. A concentrated load is assumed to act at a point, though in
practice it may be distributed over a small area. A distributed load is one which is
spread over some length of the beam. The rate of loading may be uniform or may
vary from point to point.

4.2 TYPES OF SUPPORTS AND BEAMS

A beam may have the following Kinds of supports:

(i) Roller support When a beam rests on a sliding surface such as a roller or any
flat surface like a masonry wall, the support is known as a roller support (Fig. 4.1a).
A roller support can sustain a force only normal to its surface as the possible movement
on the supporting surface does not allow any resistance in that direction. Thus it has
reaction normal to the surface only and the reaction along the rolling surface is zero.
A roller support allows the rotation of the body.

(ii) Hinged support In a hinged support no translational displacement of the
beam is possible, however, it is free to rotate (Fig. 4.1b). A hinged support can sustain
reactions in vertical as well as horizontal directions.
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A R
Hdhr suppons

A
Hinged support
(B)

Fig. 4.1 Type of supports (as conventionally drawn)

,_..1;1
T
i TF

(iii) Fixed or encastre or built-in support A beam built into a rigid support
which does not allow any type of movement or rotation is known as fixed or encasire
of built-in support (Fig. 4.1¢). A fixed support exerts a fixing moment and a reaction

on the beam.
Depending upon the type of support, the beams are classified as follows:
(1) Simply supported beam When both the supports of the beam are roller supports
or one support is roller and the other hinged, the beam is known as a simply
supported beam (Fig. 4.2a).
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Fig. 4.2

(i1} A beam with one end fixed and the other end free is called a cantilever
(Fig. 4.2b). There is a vertical reaction and moment at the fixed end (known
as fixing moment).

(iii) A beam with both ends fixed is known as fixed beam (Fig. 4.2¢).



(iv) Beams with one end fixed and the other simply supported are known as propped
cantilever (Fig. 4.2d).
(v) Beams supported at more than two sections are known as continuous beams
(Fig. 4.2¢).
In beams with hinge joints, the bending moment at the hinge is taken to be zero.
Generally beams with more than two reaction components cannot be analysed
using the equations of static equilibrium alone and are known as statically
indeterminate beams.

Shear force is the unbalanced vertical force on one side (to the left or right) of a
section of a beam and is the sum of all the normal forces on one side of the section. It
also represents the tendency of either portion of the beam to slide or shear laterally
relative to the other. Remember that a force at a section means a force of a certain
magnitude acting at that point whereas the shear force at a section means the sum of
all the forces on one side of the section.

Wy W Ws Wi W, W, Wi Wy

N N Ll o«
t booT

.H1 R Fﬁ

(a)
Fig. 4.3

Consider the beam as shown in Fig. 4.3a. It is simply supported at two points and
carries four loads. The reactions at the supports are R and R,. Now if the beam is imagined
to cut at section x-x into two portions (Fig. 4.3b), the resultant of all the forces (loads as
well as reaction of support) to the left of the section is F (assuming upwards). Also, as
the beam is in equilibrium, the resultant of the forces to the right of x-x must also be F
downwards. The force F is known as shear or shearing force (5.F.)

Shear force is considered positive when the resultant of the forces to the left of a
section is upwards or to the right downwards.

A shear force diagram (SFD) shows the variation of shear force along the length

of a beam.

()

4.4 BENDING MOMENT . -

Bending moment at a section of a beam is defined as the algebraic sum of the moments
about the section of all the forces on one side of the section.

If the moment M about the section x-x of all the forces to the left is clockwise
(Fig. 4.4), then for the equilibrium, the moment of the forces to the right of x-x must
be M counter-clockwise.

Bending moment is considered positive if the moment on the left portion is
clockwise or on the right portion counter-clockwise. This is usually referred as sagging
bending moment as it tends to cause concavity upwards. A bending moment causing
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convexity upwards is taken as negative bending moment and is called hogging bending
moment.

A bending moment diagram (BMD) shows the variation of bending moment along
the length of a beam.

-4.5 RELATION BETWEEN W, F AND M

Consider a small length &x cut out from a loaded beam at a distance x from a fixed
origin O (Fig. 4.5). Let

Fig. 4.5

w = mean rate of loading on the length éx

F = shear force at the section x

F + &F = shear force at the section x + &x

M = bending moment at the section x

M + 8M = bending moment at the section x + fx

Total load on the length & = w.dx acting approximately through the centre C (if
the load is uniformly distributed, it will be exactly acting through C).

For equilibrium of the element of length dx, equating vertical forces,

F=wlx+(F+d8F) or =—% (4.1)
that is, rate of change of shear force (or slope of the shear force curve) is equal to
intensity of loading.

Taking moments about C, M + F.%+(F +§F}.-&§~—~(M +dM)=0
Neglecting the product and squares of small quantities,
dM

F= E (4.2)

i.e. rate of change of bending moment is equal to the shear force.
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The point of zero bending moment, i.e. where the type of bending changes from
sagging to hogging is called a point of inflection or contraflexure.
Integrating Eq. 4.1 between two values of x,

b
Fa_Fb= JWir
a

which is the area under the load distribution diagram.
Similarly, integrating Eq. 4.2 between two values of x,

b
M, M, = [ Fax
This shows that the variation of bending moment between two sections is equal to
the area under the shear force diagram.

dM dF  d*'M
Also as F=E, w=_E=_ 3

4.6 SHEAR FORCE AND BENDING MOMENT
DIAGRAMS FOR CANTILEVERS

A cantilever may carry concentrated or uniformly distributed loads.
Concentrated Loads

W
Assume a cantilever of length / carrying a concentrated ﬁ l
load W at its free end as shown in Fig. 4.6a. A7 ' B
Shear force diagram Consider a section at a distance ""—_{L}"‘_x"
x from the free end. The force to the right of the section
is W downwards and is constant along the whole length |, +
of the beam or for all values of x. Therefore, the shear o SF
force will be considered positive and the shear force
diagram is a horizontal straight line as shown in Fig. 4.65. W / BM

Bending moment diagram Taking moments about (©
the section, M = W.x Fig. 4.6
As the moment on the right portion of the section is
clockwise, the bending moment diagram is negative. The bending moment can also
be observed as hogging, and thus negative. The bending moment diagram is thus an
inclined line increasing with the value of x (Fig. 4.6¢).
Maximum bending moment = W.[ at the fixed end.

Reaction and the fixing moment From equilibrium conditions, the reaction at
the fixed end is W and the fixing moment applied at the fixed end = W/

Uniformly Distributed Load

Assume a cantilever of length [ carrying a uniformly distributed load w per unit length
across the whole span as shown in Fig. 4.7a.
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Shear force diagram Consider a section at a distance wx
x from the free end. The force to the right of the section is
wx downwards and varies linearly along the whole length
of the beam. Therefore, the shear force is positive and the
shear force diagram is a straight line as shown in Fig. 4.75. @)

LLLALLLLEN
3

Bending moment diagram The force wx to the right
of section can be assumed to be acting as a concentrated
load at a point at a distance x/2 from the free end.

- (b)
Taking moments about the section, M = wrs =22

2 2 BM
As the moment on the right portion is clockwise, the “_21'2 -
bending moment diagram is negative (hogging). The (€)

bending moment diagram is parabolic and increases with Fia. 4.7
the value of x (Fig. 4.7¢). 2 g. %

[
Maximum bending moment = WT at the fixed end.

Example 4.1 A cantilever is loaded as shown in Fig. 4.8a. Draw the shear force

and bending moment diagrams.
4 kN G kN 6 kN

b o |,

e

2m 4m 4m
(a)

Solution
Shear force diagram
s Portion CD
Consider a section at a distance x from
the free end.
The force to the right of the section, 16 kN
F, =6 kN (constant) 12 kN
e Portion BC: F.=6+6=12kN 6 kN
(constant) g
e PortionAB: F,=6+6+4=16kN (b)
(constant)
Shear force diagram thus consists of several g, )
rectangles having different ordinates (Fig. 4.8b). - ;
It can be observed that the shear force under- :
goes a sudden change when passing through a 72 kN.m
load point. ©
Bending moment diagram
¢ Portion CD: Taking moments about a Fig. 4.8
section, M = G, i.e. it is linear.
AtD, x=0and M;=0; AtC,x=4mand M_.=24 kN.m
¢ Portion BC: Taking moments about a section, M_ = 6x + 6(x — 4) (linear)
AtC,x=4mand M_.=24 kN.m; AtB,x=8mand M, =72 kN.m
e Portion AB: M, =6x+ 6(x—4) + 4(x - 8) (linear)
AtB,.x=8mand M.=T72kN.m; AtA, x=10m and M, = 104 kN.m

s
AR ANANY




Shear Force and Bending Moment _ ’
The bending moment diagram is a series of straight lines between the loads
(Fig. 4.8¢).

Example 4.2 Figures 4.9 a, b and c show three cantilevers loaded in different
ways. Draw the shear force and bending moment diagrams in each case.

Solution

IKN/M 4 3kN/m ] 3 KN/m

A4 (ONVWNWENEY OOrreNeYy ;

2 m g 6m c % 6m g 4m o :&4‘“5 6m o 4m g
(a) (b) (c)

. 13'\ .o (kN)
SF ' SF :

BM T BM T
=y s s propen

126 126
Fig. 4.9

(i) Shear force diagram

e Portion BC: F, = 3x (linear); F, =0, F,, = 1B kN;

s Portion AB: F, = 18 kN (constant)
Bending moment diagram

* Portion BC: M, = 3x.(x/2) = 1.5x* (parabolic); M. = 0; M, = 54 kKN.m

e Portion AB: M, = 18(x - 3) (linear); M, = 54 kN.m; M, = 126 kN.m

Shear force and bending moment diagrams are shown below the load diagram in

the Fig. 4.9a.
(1) Shear force dingram

e Portion BC: F,=0; F.=F,=0

¢ Portion AB: Atdistance x from B, F, = 3x (linear); F, =0; F, = 1§ kN.m
Bending moment diagram

¢ Portion BC: M, =0 M, =0

* Portion AB: At distance x from B, M, = 3x.(x/2) = 1.5x (parabolic)

M, =0, M, =54 kN.m
Shear force and bending moment diagrams are shown below the load diagram in

the Fig. 4.95.
(iii) There will not be any shear force and bending moment in the portion CD and for

the portion AC, the shear force and bending moment diagrams will as in

case (1).

Example 4.3 A cantilever is loaded as shown in Fig. 4.10a. Draw the shear
Jorce and bending moment diagrams.

Solution Shear force diagram
¢ Portion £G: F_=4 kN (constant);
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e Portion EG: F, = 4 kN 6kN 4kN 6kN 4 kN
(constant);

e Portion DE: F, =4 + 2(x -
4) (linear); F,=4kN; F,;=
10 kN

e Portion CD: F, =4 + 2(x -
4) + 6; (lincar), F ;=16 kN;
F.=22kN

e Portion BC: F, = 22 + 4;
(constant); F_.= F, =26 kN;

e Portion AB: F, = 26 + 6;
(constant); F = F, = 32 kN;

Shear force diagram has been
shown in Fig. 4.105.

Bending moment diagram

e Portion EG: M, = 4x
(linear); M, = 0; M, = 16

-

e T T T T

:n.

m
)
L
m
L]

R L T

kN.m
» Portion DE: M, = 4x + 210 (c)
2x-4)° Fig. 4.10

...(parabolic);
M,=16 kN.m ; M, =37 kN.m

2
e Portion CD: M, =4x + szi}— +6(x=T7) (parabolic)
Mﬂ[]’: 7 = 3? kN.m, ME‘II= 1 = 9'4 kN.ITI
e Portion BC: M, =4x+ 2 xX6(x = 7) +6(x ~7) + 4(x - 10) (linear)

M= 10y = 94 KN.m; My, _ 5y = 146 kN;

e Portion AB: M, =4x+2x6(x-7)+6(x—T7) + 4(x - 10) + 6(x - 12) (linear)
MHJ =12} = 146 kN.m; MITU‘= 14 = 210 kN

Bending moment diagram has been shown in Fig. 4.10¢.

w wx
Example 4.4 A cantilever is loaded with m
distributed load of varying intensity with zero load 53 = B
at the free end as shown in Fig. 4.11a. Draw the shear | ; Ch— ]
force and bending moment diagrams. : (@) -
wi
Solution )
Intensity of loading at any cross-section C at a ”
w wx
distance x from free end = T g s
Shear force diagram )
At a di from B. F IWIJ_W.IE
t a distance x from B, F; = 2 Y, ==
wx?
B

wi
(parabolic); F,,=0; F, = >
‘ . - wk (c)
Shear force diagram is shown in Fig. 4.115. 6
Bending moment diagram Fig. 4.11



Shear Force and Bending Moment R ‘

load on CB x distance of centre of load
(Average intensity x distance CB) x CB/3

Bending moment at C

Wy X W 3

= —=— bi
73T (cubic)
W.Iz “T.I]
by differentiating th ion for shear force, i.e. —| 21

or j" ITeren Iﬂtmg Eﬂxprﬂsslﬂn Qr sNear rorce, 1.e d]_‘( 2{ ] ﬁf
wi?
=n- = ——
Mh ,Ma 6

(The expression for bending moment can also be found by integrating the expression

for shear force, i.e.. M, = lg—z- +CandatB;x=0; C=M,=0)

Bending moment diagram is shown in Fig. 4.11¢.
Note that the total distributed load acting on any portion is equal to the area of the
load diagram on that portion.

Example 4.5 A cantilever has distributed wx  w
load of varying intensity with zero at the fixed end A Cle—x —={B
and w at the free end as shown in Fig. 4.12a. Draw | / =
the shear force and bending moment diagrams. (a)
Solution Intensity of loading at any cross- _2""1' w( - g";-')
section C at a distance x from free end ;
L SF
R ®

Shear force diagram : BM
At a distance x from B, gﬁf- x)
F, = Area of rectangle on CB — area of upper 5

small triangle on CB (©)
Fig. 4.12

wr x_ (2 bl
2 " F Ty | (parabolicy
(or by integrating the expression for load)
Fo=0; F,=wli2
Shear force diagram is shown in Fig. 4.12b.
Bending moment diagram

= WX-—

. X owx x x  wx' .
Bending moment at C = wx. 5" T2 ¢ (3 — x) (Cubic)
(or by integrating the expression for shear force)

Ez
M, = 0:M, = =

Bending moment diagram is shown in Fig. 4.12¢.
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Example 4.6 A cantilever is loaded as shown 7 W
in Fig. 4.13a. Draw the shear force and bending 42 1_3
moment diagrams. 4 G::— a—
Solution Shear force diagram ~ ’r"’l
 Portion CB: F, =W (constant)
 Portion AC: F,=W-W=0 i
Shear force diagram is shown in Fig. 4.135. +
Bending moment diagram (5) SF
¢ Portion CB: M, = Wx (linear); ; oy
M,=0M_=Wa _ | ~
¢ Portion AC: M = Wx—- W(x-a)=Wa ;
(constant) B G
Fig.4.13

Bending moment diagram is shown in Fig. 4.13c.

4.7 SHEAR FORCE AND BENDING MOMENT
DIAGRAMS FOR SIMPLY SUPPORTED BEAMS

A simply supported beam may carry concentrated or uniformly distributed loads.

Concentrated Loads Ci
Assume a simply supported beam of length [ carrying
a concentrated load W at a distance a from end A as
shown in Fig. 4.14a. [ / -
Let the distance CB be b. (a)
First it is required to find the reactions at the j';_'l}

supports. |
Taking moments aboutend A = R,/ -W.a=0

Wi Wi Wa
or R, = '—!E : Similarly, R, = -—ir-{ (b) SF Diagram =<

Shear force diagram

e Portion BC: Consider a section at a distance x Wab
from the end B. The force to the right of the /
section is R, upwards and is constant along the {c) BM Diagram
length upto point C on the beam. Therefore, the
shear force will be negative and the shear force Fig. 4.14
diagram is a horizontal straight line as shown in Fig. 4.14b.

* Portion AC: At a section at a distance x from the end B, the force to the right of
section is

+




-da
=W L;—)= _E;E =R, (downwards)

Thus, the shear force will be positive and the shear force diagram is a horizontal
straight line as shown in Fig. 4.145.

Note that the portion AB can also be taken first and the forces to the left of any
section may be considered. In that case, the force to the left is R, and upwards and the
shear force positive, i.e. the same as before.

Bending moment diagram
Portion BC: Consider a section at a distance x from the end B.
Wax

" Taking moments about the section, M = R,.x = —

My, = 0; M. = Wabll
As the moment on the right portion of the section is counter-clockwise, the bending
moment is positive. The bending moment can also be observed as sagging, and thus
positive. Therefore the bending moment is lincar and increases with the value of x

(Fig. 4.14c).
Portion AC: Consider a section at a distance x from the end A.

Whx
M= Rﬂ*’:tTiquﬂ-‘Mc= Wab/!

The moment on the left portion of the section is clockwise, the bending moment
is positive. The bending moment can also be observed as sagging, and thus
positive.

o [f the load is at the midspan, a = b = I2

The bending moment at the midpoint, M = Wiy _wm

[ 4
which is maximum for any position of the
load on beam, WX
Uniformly Distributed Load Acrrororootn B
i I
Assume a simply supported beam of length / L:-x--—l J -
carrying a uniformly distributed load w per unit (a)

length as shown in Fig. 4.15a.
Totalload=wl; R, =R, =wl/2

Shear Force Diagram
At a section at a distance x from A

wi !
Fx = RH—W_I'=T—WI= H’(‘z‘-‘-l)

(linear);
wl _ L’t'

Fﬂ[x=ﬂ}= ?; Fb(1=ﬁ = 2
Shear force diagram is shown in Fig. 4.15b.
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Bending moment diagram
The bending moment at a section is found by treating the distributed load as acting

at its centre of gravity.
2

Wl _wx %(; -x)  (parabolic)

2 2
0;

M,= R,x—wx.

w2 l=

Mot =0) = 0s My 2

For maximum value, F=E={] or l'i—wx=u or x=1I2

. 2
Thus maximum bending moment, M, _», = %
Bending moment diagram is shown in Fig. 4.15c¢.

Uniformly Distributed Load with Equal Overhangs
Let w be the uniformly distributed load on the beam as shown in Fig. 4.16a.

As the overhangs are equal, R, =R, =@
Shear force diagram
¢ Portion DA: F, =—-wx (linear); F;=0; F,=-wa
. 1+2 I L
e Portion AB: F, = —wx+¥ (linear); F, . 5 = WE; Frcmtea = _“"?
I +2a +
e PortionBE: F.=— wx + w > ) + “ﬂgh}=- wx + w(l + 2a)

(linear)

Foztva) = Wa, Fel.t=1+2a}= 0;

Shear force diagram is shown in Fig. 4.16b.

Bending moment diagram
2

2
e Portion DA: M, = —% (parabolic) ; M, = 0; M, = _%
. wet  w(l+2a) _
e Portion AB: M, = — > + > (x—a) (parabolic)
2 2
wa wa
M= ==y Mty = =757

¢ Portion BE: Bending moment will be reducing to zero in a parabolic manner at
E. It is convenient to consider it from end E. Then M, = -wx?/2.

At midpoint C,

wia +1/2)* w(l+2a) |
Mc[x::n-n-t.l'l} == 9 + 2 .E




The shape of bending moment curve Dﬁ%ﬁmm £
between A and B will depend upon the value C 18
of (12 - 4a?). P e le.
(i) If (P -4a?) <0,ie.when/<2a, M, Ra (a) Ay

is negative which means bending

moment will be negative throughout wi
(Fig. 4.16¢). 2 [T~ "~ SF
i) I (P-4a)=0Oic.whenl=2a,M, | S~
is zero which means bending (b) 2
moment will just touch the span at
the midpoint (Fig. 4.16d).
(iii) If (> -4a%) >0, i.e. when !> 2a, M.
is positive which means there are
to be two points of contraflex-

ture between A and B which can ; ; BM
be found by putting the express- v \/

ion for bending moment between w—f @ !éf

A and B equal to zero (Fig. 4.16¢),

i.e. m

7 p 7 BM
2 i e\
AW; +W(I;2a}(x_a]=u \wél m\w{
2 (e) 2

or *-2a+Dx=-a2a+1)
Adding (a + i/2)* on both sides, Fig. 4.16

2

) I 1Y I
x*=2a+=|x+la+—-| = —a2a+)+|a+—
2 2 2

#

2
[ 2
or [1—[d+—] = I—-—-az
2/ 4

o)

I
—_—
)

+
td |~
—
]

H‘.
=]
I
=)

Eis]

ar
I ’F
or x= (H+E)i :—{Iz

As a + /2 is the distance DC, the points of contraflexture are at distance +, ‘% ~a*
from the midpoint of the beam.

Couples

Let a beam be subjected to a couple M as shown in Fig. 4.17a.
To find reactions at the supports, take moments about B,
R, =M or R,=M/land R,=-R,=-M/l
The shear force diagram is a rectangle as shown in Fig. 4.175.
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