21222

3 Hours / 70 Marks

\square
15 minutes extra for each hour
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

> Marks

1. Solve any FIVE of the following: 10
a) Find value of $\log (2 / 3)+\log (4 / 5)-\log (8 / 15)$.
b) Show that the points $(8,1),(3,-4),(2,-5)$ are collinear.
c) Without using calculator find value of $\sin \left(105^{\circ}\right)$.
d) Find area of Rhombus where diagonals are of length 6 cm and 9 cm .
e) Find surface area of cuboid whose dimensions are $8 \mathrm{~cm} \times 11 \mathrm{~cm} \times 15 \mathrm{~cm}$.
f) If coefficient of variance is 5 and mean is 60 . Find standard deviation.
g) Find range and coefficient of range for the data:
$40,52,47,28,45,36,47,50$.
h) Find surface area of sphere whose volume is $\frac{4 \pi}{3} \mathrm{~cm}^{3}$.
2. Solve any THREE of the following:
a) If $\mathrm{A}=\left[\begin{array}{rrr}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ prove that $\mathrm{A}^{2}=\mathrm{I}$.
b) Resolve following into partial fraction $\frac{x+3}{(x-1)(x+1)(x+5)}$
c) Following results are obtained as a result of experiment.

Find V_{1}, V_{2}, V_{3} by using Cramer's Rule.
$\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=9, \quad \mathrm{~V}_{1}-\mathrm{V}_{2}+\mathrm{V}_{3}=3, \mathrm{~V}_{1}+\mathrm{V}_{2}-\mathrm{V}_{3}=1$
d) Compute mean deviation for the mean of the data:
$12,6,7,3,15,10,18,5$.
3. Solve any THREE of the following:
a) Solve without using calculator,

$$
\sin \left(420^{\circ}\right) \cos \left(390^{\circ}\right)+\sin \left(-330^{\circ}\right) \cos \left(-300^{\circ}\right)
$$

b) Prove : $\frac{\sin 4 \theta+\sin 2 \theta}{1+\cos 2 \theta+\cos 4 \theta}=\tan 2 \theta$
c) Prove that $: \frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=\tan 5 A$
d) Prove : $\tan ^{-1}(1 / 8)+\tan ^{-1}(1 / 5)=\tan ^{-1}(1 / 3)$
4. Solve any THREE of the following:
a) Find x and y if

$$
\left\{4\left[\begin{array}{rrr}
1 & 2 & 0 \\
2 & -1 & 3
\end{array}\right]-2\left[\begin{array}{rrr}
1 & 3 & -1 \\
2 & -3 & 4
\end{array}\right]\right\}\left[\begin{array}{r}
2 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

b) Resolve into partial fractions: $\frac{3 x-2}{(x+2)\left(x^{2}+4\right)}$
c) Prove : $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}=\frac{1}{8}$
d) If $\tan (x+y)=\frac{3}{4}$ and $\tan (x-y)=\frac{1}{3}$. Find $\tan 2 x$.
e) If $\sin \mathrm{A}=\frac{1}{2}$. Find $\sin 3 \mathrm{~A}$.
5. Solve any TWO of the following:
a) Attempt the following:
i) Find equation of line passing through points $(6,-4)$ and $(-3,8)$.
ii) Find distance between parallel lines $3 x+2 y-5=0$ and $3 x+2 y-6=0$.
b) Attempt the following:
i) Find equation of line passing through point $(2,0)$ and perpendicular to $x+y+3=0$.
ii) Find acute angle between the lines $3 x-y+4=0$ and $2 x+y=3$.
c) Attempt the following:
i) Find the area of ring between two concentric circles whose circumferences are 77 cm and 55 cm .
ii) The area of piece of land is in the form of a quadrilateral ABCD . The diagonal AC is 400 m long off-set to B is 220 m and off-set to D is 98 m . Find the area.
6. Solve any TWO of the following:
a) Find the mean and standard deviation and coefficient of variance of the following data:

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	3	5	8	3	1

b) Attempt the following:
i) Find range and coefficient of range for following data:

Marks	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$
No. of students	6	10	16	14	8	4

ii) The two sets of observations are given below:

Set I	Set II
$\bar{x}=82.5$	$\bar{x}=$ mean $=48.75$
$\sigma=$ S.D $=7.3$	$\sigma=$ S.D $=8.35$

Which of two sets is more consistent?
c) Solve the following equations by matrix inversion method.

$$
x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6 .
$$

