22423

21222

3 Hours / 70 Marks

Seat No.
15 minutes extra for each hour
Instructions - (1) All Questions are Compulsory.
(2) Figures to the right indicate full marks.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Answer each next main Question on a new page.
(5) Assume suitable data, if necessary.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following: $\mathbf{1 0}$
a) State ideal and practical value of given parameters for Op-Amp IC-741
i) Input resistance
ii) Slew rate
b) Sketch the circuit diagram of Op-Amp based differential amplifier in open loop mode.
c) List four specifications of LM 324.
d) List any four merits of active filters over passive filters.
e) Draw sample and hold circuit using op-amp.
f) Define following terms related with phase lock loop (PLL)
i) Lock range
ii) Capture range
g) State the classification of filters based on frequency response.
2. Attempt any THREE of the following:
a) State the difference between open loop and closed loop configuration of OP-AMP (any four points).
b) Draw a circuit diagram of V-I converter of floating load. Derive expression for its output.
c) Sketch the Timer IC 555 based monostable multivibrator with sutaible value of R and C for pulse width.
Refer Fig. No. 1 . $\mathrm{tp}=1 \mathrm{msec}$.

Fig. No. 1.
d) Explain virtual ground concept. In which basic amplifier virtual ground is present.
3. Attempt any THREE of the following:
a) If $\mathrm{R}_{1}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ and rms input voltage $\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}$. Calculate the output voltage in inverting and non-inverting mode.
b) Explain the operation of window detector with neat sketch and its input and output waveforms.
c) Identify and draw the Op-Amp based filter circuit to fullfill following frequency response. Refer Fig. No. 2.

Fig. No. 2.
d) Draw the block diagram of PLL and state the function of each block.
4. Attempt any THREE of the following:
a) Draw the circuit diagram to generate the following output using op-amps.
$\mathrm{V}_{0}=3 \mathrm{~V}_{1}+2 \mathrm{~V}_{2}-4 \mathrm{~V}_{3}: \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ are input voltages.
b) Define the following parameters of op-amp
i) Input bias current
ii) Input offset current
iii) Slew rate
iv) CMRR
c) Sketch the diagram of voltage follower. Why it is called voltage follower. State its one application.
d) Sketch the op-amp based Wein Bridge Oscillator for frequency $=1 \mathrm{KHz}$.
e) For IC 555 configured as astable multivibrator $\mathrm{R}_{1}=5.6 \mathrm{k} \Omega$, $R_{2}=2.7 \mathrm{k} \Omega$ and $C=0.1 \mu \mathrm{~F}$. Find the frequency of oscillation and duty cycle. Sketch its output waveforms.
5. Attempt any TWO of the following:
a) Identify waveform shown in Figure No. 3. Name the circuit to obtain the above waveform. Sketch the circuit diagram for it.

Fig. No. 3
P.T.O.
b) Design a bandpass filter for $\mathrm{F}_{\mathrm{L}}=100 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{H}}=1 \mathrm{KHz}$ and passband gain $=4$.
c) Sketch output signal along with input signal as sine wave of 2v peak to peak for following Op-Amp based circuits with ideal conditions.
i) Inverting amplifier with gain 5
ii) Positive peak detector
iii) Active integrator
iv) Non-inverting zero crossing detector
v) Non-inverting unity gain amplifier
vi) Active differentiator
6. Attempt any TWO of the following:
a) For the given equation sketch the circuit diagram and output waveforms for square wave input.

$$
\mathrm{V}_{0}=-\mathrm{R}_{\mathrm{F}} \quad \mathrm{C}_{1} \frac{\mathrm{~d}}{\mathrm{dt}}(\mathrm{Vin})
$$

b) Explain the operation of instrumentation amplifier using three op-amps with neat sketch.
c) Design a second order low pass butter worth filter with a cut-off frequency 1.6 KHz . Sketch the designed circuit and its frequency response.

