12223 3 Hours / 70 Marks

Seat No.

Instructions -

- (1) All Questions are Compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (7) Programmable Pocket Calculator is not allowed.

Marks

1. Attempt any FIVE of the following:

10

- a) Define Odd and Even functions.
- b) If f(x) = 3x + a and f(1) = 7, find a and f(4).
- c) If $y = x^{10} + 10^x + e^x + \log x$ find $\frac{dy}{dx}$.
- d) Evaluate $\int x \log x \, dx$
- e) Evaluate $\int \frac{1}{1 \cos 2x} dx$
- f) Using integration, find the area of the region bounded by the lines 2y + x = 8, x-axis and the lines x = 2 and x = 4.
- g) State the Simpson's one-third rule of numerical integration.

P.T.O.

12

12

12

2. Attempt any THREE of the following:

- a) Find $\frac{dy}{dx}$ if $y = \log[\csc x \cot x]$.
- b) Find $\frac{dy}{dx}$ if $x = \sec^2\theta$, $y = \tan^3\theta$ at $\theta = \frac{\pi}{3}$.
- c) A beam is bent in the form of the curve $y = 2\sin x \sin 2x$. Find the radius of curvature at $x = \frac{\pi}{2}$.
- d) A telegraph wire hangs in the form of a curve $y = a \log \sec(\frac{x}{a})$ where a is constant show that the curvature at any point is $\frac{1}{a}\cos(\frac{x}{a})$.

3. Attempt any THREE of the following:

- a) Find the equation of the tangent and normal to the curve $13x^3 + 2x^2y + y^3 = 1$ at (1, -2).
- b) Find $\frac{dy}{dx}$ if $y = x^{\sin x} + (\tan x)^x$.
- c) If $y = \log(x\sin 2x)$ find $\frac{dy}{dx}$.
- d) Evaluate $\int \frac{e^x(x+1)}{\sin^2(xe^x)} dx$.

4. Attempt any THREE of the following:

- a) Evaluate $\int \frac{1}{9x^2 + 6x + 10} dx$
- b) Evaluate $\int \frac{1}{3 + 2\sin x + \cos x} dx$
- c) Evaluate $\int x^2 e^{3x} dx$
- d) Evaluate $\int \frac{\cos x}{(4 + \sin x) (3 + \sin x)} dx$
- e) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x}} + \sqrt[3]{\csc x} dx$

5. Attempt any TWO of the following:

- 12
- Find the area cut off from the parabola $4y = 3x^2$ with the line 2y = 3x + 12.
- Attempt the following
 - Form the differential equation from the relation $y = Ae^{3x} + Be^{-3x}$ where A & B are arbitrary constant's.
 - Solve $(x^2 yx^2)dy + (y^2 + xy^2)dx = 0$.
- A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of $(\frac{\pi}{A})$ cm/sec, where A is the area of the water surface at that instant, show that the vessel will be full in 75 seconds.

6. Attempt any TWO of the following:

12

- a) Attempt the following
 - Evaluate $\int_{0}^{8} \log_{e} x \, dx$ using Trapezoidal rule from the i) following data

x	3	4	5	6	7	8
log _e x	1.0986	1.3863	1.6094	1.7918	1.9459	2.0794

Apply Simpson's one-third rule to find $\int_{0}^{x} f(x) dx$ using ii) the following data.

x	0	1.0	1.5	2.0
f(x)	1.1	2.4	5.7	8.1

- b) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x \ dx$ using Simpson's $\frac{3}{8}$ rule with n = 8.
- c) Evaluate $\int_{1}^{3} \frac{1}{x+2} dx$ using Simpson's one third rule. Divide the interval [1, 5] into 4 equal subintervals.