PROGRAMMING IN C Course Code: 312019

Programme Name/s : Automation and Robotics

Programme Code : AO

Semester : Second

Course Title : PROGRAMMING IN C

Course Code : 312019

I. RATIONALE

Procedure Oriented Programming language helps the students to solve given problems with help of basic principles of C programming paradigm. This course is basically designed to create a base to develop foundation skills for Embedded C Programming required for automation and robotics applications.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the student to attain the following industry identified outcome through various teaching learning experiences: Develop applications in C using Procedure Oriented Programming skills.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Use keywords and Operators in C programs.
- CO2 Use Control Structure to implement decision making problems in C programs.
- CO3 Develop C programs using Arrays.
- CO4 Implement C programs using Structures.
- CO5 Use functions in C program to implement modular programming approach.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	ear	ning	g Sch	eme					A	ssess	ment	Sch	eme								
Course	Course Title	Abbr	Course Category/		onta Onta Hrs. Wee	ict / k	GI II		Credits	Theory Based on LL & B		Theory		Theory TL Paper		ory							Based on SL		Total
Code			S				SLH	NLH		Duration		Practical				1		Marks							
				CL	TL	LL	4				FA- TH	SA- TH	To	tal	FA-	PR	SA-	PR	SL	ιA					
											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min					
312019	PROGRAMMING IN C	CPR	SEC	1	-	2	1	4	2	-	-	-	-	-	25	10	25@	10	25	10	75				

Total IKS Hrs for Sem.: 0 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note:

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Course Code: 312019

PROGRAMMING IN C

Theory Learning **Suggested** Learning content mapped with Theory Learning Sr.No Outcomes (TLO's)aligned Learning Outcomes (TLO's) and CO's. to CO's. Pedagogies. TLO 1.1 Identify the basic building blocks of C Unit - I C Language Basic Program. 1.1 History of C, General structure of C program. 1.2 Header files, main() function, use of comments. TLO 1.2 Write C program 1.3 Input statement using scanf() and output statement using keywords. Chalk-Board 1 TLO 1.3 Write C program using printf(). Demonstration using input output 1.4 Variable, Data Types, Keywords, Constants, Type Hands-on statements. conversion. TLO 1.4 Write C program 1.5 Operators: Arithmetic, Relational, Logical, Bitwise, using arithmetic, logical Assignment, Unary, Ternary, Scope Resolution. and bitwise operators. TLO 2.1 Write 'C' program using decision making structure to solve the given problem **Unit - II Decision Making** TLO 2.2 Write 'C' 2.1 If statement, If-else statement, Nested if statement, else Chalk-Board program using loop if Ladder, Switch statement. 2 Demonstration statements to solve the 2.2 Loop statements: While Loop, do-while Loop, for Hands-on Loop, Nested for loop. given iterative problem TLO 2.3 Use Appropriate 2.3 Goto statement, break statement, continue statement. statements to alter the program flow in the given loop TLO 3.1 Write C program to create one and two Unit - III Array dimensional arrays. 3.1 Need of Array, Types of Array: One dimensional arrays TLO 3.2 Write C program Chalk-Board and Two dimensional array. 3 to demonstrate operations Demonstration 3.2 Array declaration and Initialization, Accessing One and Hands-on on arrays. Two-Dimensional array elements, Operations on array. TLO 3.3 Write C program 3.3 Array of characters using an array of characters. TLO 4.1 Write C program to demonstrate how to **Unit - IV Structures** Chalk-Board declare and initialize 4.1 Introduction and Features of Structures. Demonstration structure. 4.2 Declaration and Initialization of Structures. Hands-on TLO 4.2 Write C program 4.3 Array of Structure, Typedef, Enumerated Data Type. using an array of structures **Unit - V Functions** TLO 5.1 Write C program 5.1 Concept and need of functions. using predefined string and 5.2 Library functions: Math functions, String handling math library functions. functions, other miscellaneous functions. TLO 5.2 Write C program 5.3 Writing User defined functions, scope of variables. using user defined Chalk-Board 5.4 Different ways of function calling: Functions Without 5 functions. Demonstration Arguments and Return Value, Functions With No TLO 5.3 Write C program Hands-on Arguments But has a Return Value, Functions With to solve recursive Arguments But No Return Value, Functions That Accept problems using user Arguments and Give a Return Value, Parameter passing: defined recursive call by value and call by reference. functions. 5.5 Recursive functions.

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Course Code: 312019

PROGRAMMING IN C

Practical / Tutorial / Laboratory Learning Outcome (LLO)		Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Use variables, constants and keywords. LLO 1.2 Apply type conversion concept.	1	* Develop minimum two program using constants, variables and exhibiting data type conversion.	2	CO1
LLO 2.1 Use arithmetic operators to build arithmetic expressions. LLO 2.2 Use relational operators to build relational expressions.	2	Develop a C programs using arithmetic and relational operators.	2	CO1
LLO 3.1 Use logical operators to solve logical expressions. LLO 3.2 Use bitwise operators to solve bitwise operations	3	* Develop a C programs using logical and bitwise operators.	2	CO1
LLO 4.1 Apply decision making if statements for given situations.	4	* Develop a program to implement decision making statements i.e. if statement and ifelse.	2	CO2
LLO 5.1 Use multi-way decision making statement to solve the problem	5	* Develop C program using ifelse, while, for loop statements	2	CO2
LLO 6.1 Use break and continue statement LLO 7.1 Use entry controlled while	6	Develop a program to demonstrate the use of break and continue statements	2	CO2
loop statement for the given situation. LLO 7.2 Use entry controlled for loop statement for the given situation.	7	* Develop a program using while and for loop to solve the given iterative problem.	2	CO2
LLO 8.1 Use exit controlled do while loop statement for the given situation.	8	* Develop a program using dowhile loop to solve the given iterative problem.	2	CO2
LLO 9.1 Apply the concepts of array.	9	* Develop a program to implement one dimensional array.	2	СОЗ
LLO 10.1 Perform arithmetic operations on a two-dimensional matrix.	10	* Develop a program to perform arithmetic operations on two dimensional array.	2	CO3
LLO 11.1 Perform operations using two dimensional array	11	Develop program to perform transpose operation on a two dimentional matrix	2	СОЗ
LLO 12.1 Apply the concept of structure.	12	* Write C program using Structure.	2	CO4
LLO 13.1 Apply the concept of array of structure.	13	Write C program to demonstrate the use of arrays of structure.	2	CO4
LLO 14.1 Use string handling library functions. LLO 14.2 Use math library functions.	14	* Develop a C program to demonstrate the use of standard library functions.	2	CO5
LLO 15.1 Define user defined function. LLO 15.2 Write a C program to call user defined function.	15	* Develop a C program using user defined functions.	2	CO5
LLO 16.1 Use recursion concept to define recursive function.	16	* Develop a C Program using recursion.	2	CO5
			l l	

Note: Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.

PROGRAMMING IN C Course Code: 312019

Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles /	Number of hrs.	Relevant			
Learning Outcome (LLO)	No	Tutorial Titles		COs			
Judicial mix of LLOs are to be performed to achieve desired outcomes.							

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

- 1.Develop simple calculator to perform mathematical operations.
- 2. Develop food menu card for restaurant.
- 3. Develop menu driven program for invoice management system.
- 4. Develop menu driven program for number conversion system such as Hexadecimal to Decimal, Decimal to Binary etc.

Note:

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
	1. Computer System (Any computer system with basic configuration RAM: 8GB	
1	Minimum, OS: DOS or Any Windows OS version	All
	2. C Compiler (Turbo C Compiler/GCC Compiler / or any other C compiler)	

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	C Language Basic	CO1	3	0	0	0	0
2	2 II Decision Making		CO2	4	0	0	0	0
3	III	Array	CO3	3	0	0	0	0
4	IV	Structures	CO4	2	0	0	0	0
5	V	Functions	CO5	3	0	0	0	0
		Grand Total		15	0	0	0	0

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Continuous Assessment based on Process and Product related performance indicators
- Each Practical will be assessed considering

60% weightage to Process

40% weightage to Product

PROGRAMMING IN C Course Code: 312019

Summative Assessment (Assessment of Learning)

• End Semester Examination, Lab performance, viva voce

XI. SUGGESTED COS - POS MATRIX FORM

		S Ou	Programme Specific Outcomes* (PSOs)							
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	SOCIATA			1	PSO- 2	PSO-
CO1	1	2	2	1	-	-	1			
CO2	1	2	2	1	-	-	1			
CO3	1	2	2	1	-	-	1			
CO4	1	2	2	1	-	-	1			
CO5	1	2	2	1	-	-	1			

Legends:- High:03, Medium:02, Low:01, No Mapping: -

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	E Balagurusamy	PROGRAMMING IN ANSI C	McGraw Hill Education,8TH EDITION ISBN: 978-9351343202
2	Yashavant Kanetkar	Let Us C: Authentic guide to C programming language	BPB Publications, 19th Edition ISBN:9789355512765
3	Kernighan Brian W, Ritchie Dennis	C Programming Language	Pearson Education India, ISBN: 978-9332549449
4 He	Herbert Schildt	C: THE COMPLETE REFERENCE	McGraw Hill Education, Second Edition ISBN:978-0070411838

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.w3schools.com/c/c_intro.php	C Introduction
2	https://www.geeksforgeeks.org/c-programming-language/	C Programming Language Tutorial
3	https://www.tutorialspoint.com/cprogramming/index.htm	C Tutorial
4	https://www.javatpoint.com/c-programming-language-tutorial	C Programming Language Tutorial

Note:

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

^{*}PSOs are to be formulated at institute level