APPLIED MATHEMATICS

Programme Name/s	: Architecture Assistantship/ Automobile Engineering./ Artificial Intelligence/ Agricultural Engineering/ Artificial Intelligence and Machine Learning/ Automation and Robotics/ Architecture/ Cloud Computing and Big Data/ Civil Engineering/ Chemical Engineering/ Computer Technology/ Computer Engineering/ Civil & Rural Engineering/ Construction Technology/ Computer Science & Engineering/ Digital Electronics/ Data Sciences/ Electrical Engineering/ Electronics & Tele-communication Engg./ Electrical and Electronics Engineering/ Electrical Power System/ Electronics & Communication Engg./ Electronics Engineering/ Computer Hardware & Maintenance/ Instrumentation & Control/ Industrial Electronics/ Information Technology/ Computer Science & Information Technology/ Instrumentation/ Interior Design & Decoration/ Interior Design/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Medical Electronics/ Production Engineering/ Computer Science/ Electronics & Computer Engg.
Programme Code	: AA/ AE/ AI/ AL/ AN/ AO/ AT/ BD/ CE/ CH/ CM/ CO/ CR/ CS/ CW/ DE/ DS/ EE/ EJ/ EK/ EP/ ET/ EX/ HA/ IC/ IE/ IF/ IH/ IS/ IX/ IZ/ LE/ ME/ MK/ MU/ PG/ SE/ TE
Semester	: Second
Course Title	: APPLIED MATHEMATICS
Course Code	: 312301

I. RATIONALE

An Applied Mathematics course, covering integration, definite integration, differential equations, numerical methods, and probability distribution, equips engineering students with essential problem-solving tools. It enables them to model and analyze complex systems, make informed decisions and address real-world engineering challenges effectively.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Engineers applying Mathematics should proficiently solve complex real-world problems, enhancing decisionmaking, design and innovation with precision and efficiency.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Solve the broad-based engineering problems of integration using suitable methods.
- CO2 Use definite integration to solve given engineering related problems.
- CO3 Apply the concept of differential equation to find the solutions of given engineering problems.
- CO4 Employ numerical methods to solve programme specific problems.
- CO5 Use probability distributions to solve elementary engineering problems.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	ear	nin	g Scho	eme					A	ssess	ment	Sch	eme				
Course	Course Title	Abbr	Course Category/	Co l	onta onta Hrs. Wee	nct ./	GI II	Based on LL & Theory TL Theory TL		Credits Paper		Theory		Theory				. &	Based on SL		Total
Code			s				SLH	NLH	-	Duration	-					Prac	ctical				Marks
				CL	TL	LL					FA- TH	SA- TH	To	tal	FA-	PR	SA-	PR	SL	A	
											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
312301	APPLIED MATHEMATICS	AMS	AEC	3	1	-	-	4	2	3	30	70	100	40	I	-	-	-	-	I	100

APPLIED MATHEMATICS

Total IKS Hrs for Sem. : 2 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

Learning content mapped with Suggested Theory Learning Outcomes (TLO's)aligned to Sr.No **Theory Learning Outcomes** Learning CO's. (TLO's) and CO's. Pedagogies. **Unit - I Indefinite Integration** TLO 1.1 Solve the given simple problem(s) 1.1 Simple Integration: Rules of based on rules of integration. Improved Lecture integration and integration of TLO 1.2 Evaluate the given simple integral(s) Demonstration standard functions using substitution method. Chalk-Board 1 1.2 Integration by substitution. TLO 1.3 Integrate given simple functions using Presentations 1.3 Integration by parts. the integration by parts. Video 1.4 Integration by partial fractions TLO 1.4 Solve the given simple integral by Demonstrations (only linear non repeated factors at partial fractions. denominator of proper fraction). **Unit - II Definite Integration** 2.1 Definite Integration: Definition, Video TLO 2.1 Solve given examples based on Definite rules of definite integration with Simulation Integration. 2 simple examples. Chalk-Board TLO 2.2 Use properties of definite integration to 2.2 Properties of definite integral Improved Lecture solve given problems. (without proof) and simple Presentations examples. TLO 3.1 Find the order and degree of given **Unit - III Differential Equation** differential equations. 3.1 Concept of Differential TLO 3.2 Form simple differential equation for Video Equation. given elementary engineering problems. Demonstrations 3.2 Order, degree and formation of TLO 3.3 Solve given differential equations using Presentations 3 Differential equations Chalk-Board the methods of Variable separable and Exact 3.3 Methods of solving differential Differential Equation(Introduce the concept of Improved Lecture equations: Variable separable form, partial differential equation). Flipped Classroom Exact Differential Equation, Linear TLO 3.4 Solve given Linear Differential Differential Equation. Equation. TLO 4.1 Find roots of algebraic equations by **Unit - IV Numerical Methods** Video 4 using appropriate methods. 4.1 Solution of algebraic equations: **SCILAB** TLO 4.2 Solve the system of equations in three Bisection method, Regula falsi Spreadsheet unknowns by iterative methods. method and Newton – Raphson Chalk-Board TLO 4.3 Solve problems using Bakhshali Flipped Classroom method. iterative method for finding approximate square 4.2 Solution of simultaneous Presentations root. (IKS) equations containing three

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

APPL	IED MATHEMATICS	13-01-2025 12:18:44 PM Course Code : 312301			
Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.		
		Unknowns by iterative methods: Gauss Seidal and Jacobi's method. 4.3 Bakhshali iterative method for finding approximate square root. (IKS)			
5	TLO 5.1 Solve given problems based on repeated trials using Binomial distribution. TLO 5.2 Solve given problems when number of trials are large and probability is very small. TLO 5.3 Utilize the concept of normal distribution to solve related engineering problems.	Unit - V Probability Distribution 5.1 Binomial distribution. 5.2 Poisson's distribution. 5.3 Normal distribution.	Video ORANGE Chalk-Board Improved Lecture Presentations		

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Solve simple problems of Integration by substitution	1	*Integration by substitution	1	CO1
LLO 2.1 Solve integration using by parts	2	*Integration by parts	1	CO1
LLO 3.1 Solve integration by partial fractions(only linear non repeated factors at denominator of proper fraction).	3	Integration by partial fractions.	1	CO1
LLO 4.1 Solve examples on Definite Integral based on given methods.	4	Definite Integral based on given methods.	1	CO2
LLO 5.1 Solve problems on properties of definite integral.	5	*Properties of definite integral	1	CO2
LLO 6.1 Solve given problems for finding the area under the curve and volume of revolution.	6	* #Area under the curve and volume of revolution.(Only for Civil and Mechanical Engineering Group)	1	CO2
LLO 7.1 Solve examples on mean value and root mean square value.	7	* #Mean value and root mean square value. (Only for Computer, Electrical and Electronics Engineering Group)	1	CO2
LLO 8.1 Solve examples on order, degree and formation of differential equation.	8	Order, degree and formation of differential equation.	1	CO3
LLO 9.1 Solve first order first degree differential equation using variable separable method.	9	Variable separable method.	1	CO3
LLO 10.1 Solve first order first degree differential equation using exact differential equation and linear differential equation.		*Exact differential equation and linear differential equation.	1	CO3
LLO 11.1 Solve engineering application problems using differential equation.	11	*Applications of differential equations.(Take programme specific problems)	1	CO3
LLO 12.1 Solve problems on Bisection method and Regula falsi method.	12	*Bisection method and Regula falsi method.	1	CO4

				3-01-2025 12:18:44 PM				
APPLIED MATHEMATICS	APPLIED MATHEMATICS Course Code : 31230							
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs				
LLO 13.1 Solve problems on Newton- Raphson method.	13	Newton- Raphson method.	1	CO4				
LLO 14.1 Solve problems on Jacobi's method and Gauss Seidal Method.	14	Jacobi's method and Gauss Seidal Method.	1	CO4				
LLO 15.1 Use Bakhshali iterative methods for finding approximate value of square root. (IKS)	15	*Bakhshali iterative methods for finding approximate value of square root. (IKS)	1	CO4				
LLO 16.1 Solve engineering problems using Binomial distribution.	16	*Binomial Distribution	1	CO5				
LLO 17.1 Solve engineering problems using Poisson distribution.	17	*Poisson Distribution	1	CO5				
LLO 18.1 Solve engineering problems using Normal distribution.	18	Normal Distribution	1	CO5				
LLO 19.1 Solve problems on Laplace transform and properties of Laplace transform.	19	* # Laplace transform and properties of Laplace transform.(Only for Electrical and Electronics Engineering Group)	1	CO2				
LLO 20.1 Solve problems on Inverse Laplace transform and properties of Inverse Laplace transform.	20	* # Inverse Laplace transform and properties of Inverse Laplace transform.(Only for Electrical and Electronics Engineering Group)	1	CO2				
Note : Out of above suggestive LLOs	s -							
 '*' Marked Practicals (LLOs) Are mandatory. Minimum 80% of above list of lab experiment are to be performed. 								

Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

• NA

Assignment

• NA

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant
		LLO Number

APPL	IED MATHEMATICS Course	13-01-2025 12:18:44 PM Code : 312301
Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Open-source software like wolfram alpha, SageMaths, MATHS3D, GeoGebra, Graph, DPLOT, and Graphing Calculator (Graph Eq2.13), ORANGE can be used for Algebra, Calculus, Trigonometry and Statistics respectively.	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	Ι	Indefinite Integration	CO1	15	2	6	12	20
2	II	Definite Integration	CO2	8	2	4	6	12
3	III	Differential Equation	CO3	8	2	4	6	12
4	IV	Numerical Methods	CO4	6	2	4	8	14
5	V	Probability Distribution	CO5	8	2	4	6	12
		Grand Total	45	10	22	38	70	

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• Tests

Summative Assessment (Assessment of Learning)

• End Term Exam

XI. SUGGESTED COS - POS MATRIX FORM

		Programme Outcomes (POs)								
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management		1	PSO- 2	PSO- 3
CO1	3	1	-	-	1	-	1			
CO2	3	1	-	-	1	-	1			
CO3	3	2	1	1	1	1	1			
CO4	2	3	2	2	1	1	1			
CO5	2	2	1	1	2	1	2			
			2,Low:01, No nstitute level	Mapping: -						

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number		
1	Grewal B. S.	Higher Engineering Mathematics	Khanna publication New Delhi, 2013 ISBN: 8174091955		
2	Dutta. D	A text book of Engineering Mathematics	New age publication New Delhi, 2006 ISBN: 978- 81-224-1689-3		

APPLIED MATHEMATICS

13-01-2025 12:18:44 PM Course Code : 312301

Sr.No	Author	Title	Publisher with ISBN Number			
3	Kreysizg, Ervin	Advance Engineering	Wiley publication New Delhi 2016 ISBN:			
_	ŷ	Mathematics	978-81-265-5423-2			
4	Das H.K.	Advance Engineering	S Chand publication New Delhi 2008 ISBN:			
4	Das II.K.	Mathematics	9788121903455			
5	S. S. Sastry	Introductory Methods of	PHI Learning Private Limited, New Delhi.			
5	5. 5. 5astry	Numerical Analysis	ISBN-978-81-203-4592-8			
		Studies in the History of	Hindustan Book Agency (India) P 19 Green			
6	C. S. Seshadri	Indian Mathematics	Park Extension New Delhi. ISBN			
		mulan Wathematics	978-93-80250-06-9			
	Marvin L. Bittinger David		Addison-Wesley 10th Edition ISBN-13:			
7	J.Ellenbogen Scott A.	Calculus and Its Applications	978-0-321-69433-1			
	Surgent		378-0-321-09+33-1			
	Gareth James, Daniela	An Introduction to	Springer New York Heidelberg Dordrecht			
8	Witten, Trevor Hastie	StatisticalLearning with	LondonISBN 978-1-4614-7137-0 ISBN			
	Robert and Tibshirani	Applications in R	978-1-4614-7138-7 (eBook)			
8		e				

XIII . LEARNING WEBSITES & PORTALS

Link / Portal	Description
http://nptel.ac.in/courses/106102064/1	Online Learning Initiatives by IITs and IISc
https://www.khanacademy.org/math? gclid=CNqHuabCys4CFdOJaddHo Pig	Concept of Mathematics through video lectures and notes
https://www.wolframalpha.com/	Solving mathematical problems, performing calculations, and visualizing mathematical concepts.
http://www.sosmath.com/	Free resources and tutorials
http://mathworld.wolfram.com/	Extensive math encyclopedia with detailed explanations of mathematical concepts
https://www.mathsisfun.com/	Explanations and interactive lessons covering various math topics, from basic arithmetic to advanced
http://tutorial.math.lamar.edu/	Comprehensive set of notes and tutorials covering a wide range of mathematics topics.
https://www.purplemath.com/	Purplemath is a great resource for students seeking help with algebra and other foundational mathematics to improve learning.
https://www.brilliant.org/	Interactive learning in Mathematics
https://www.edx.org/	Offers a variety of courses
https://www.coursera.org/	Coursera offers online courses in applied mathematics from universities and institutions around the globe.
https://ocw.mit.edu/index.htm	The Massachusetts Institute of Technology (MIT) offers free access to course materials for a wide range of mathematical courses.
	https://www.khanacademy.org/math? gclid=CNqHuabCys4CFdOJaddHo Pig https://www.wolframalpha.com/ http://www.sosmath.com/ http://mathworld.wolfram.com/ https://www.mathsisfun.com/ http://tutorial.math.lamar.edu/ https://www.purplemath.com/ https://www.brilliant.org/ https://www.coursera.org/

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students