Programme Name/s : Automation and Robotics/ Instrumentation & Control/ Instrumentation

Programme Code	: AO/ IC/ IS
Semester	: Third
Course Title	: 3D MODELLING & SIMULATION
Course Code	: 313014

I. RATIONALE

3D simulation is the process of creating a three-dimensional virtual model of a product and testing it in a simulated environment before the final development for identifying potential problems in product design. This course will enable the diploma students to develop skills for comprehensive 3D simulation in-line with the industry demands for addressing real-world design challenges.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain the following industry/ employer expected outcome through various teaching learning experiences:

Graduates of 3D simulation course are expected to Integrate 3D simulation using CAD for creating real world projects.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Use fundamental commands for basic 3D modeling in open source CAD software
- CO2 Create simple 3D models for a given application
- CO3 Create assembly of complex 3D structure for a given application
- CO4 Apply rendering and visually appealing features for a 3D model
- CO5 Create real-world projects by applying advanced simulation techniques

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	ear	ning	g Scheme			Assessment Scheme											
Course			Course	Actual Contact Hrs./Week						Theory		Based on LL & TL		&	Base SI	d on L					
Code	Course Title	Abbr	Category/				SLH	NLH	Credits	Paper Duration						Prac	ctical				Total Morke
			CL TL LL FA- S TH T	SA- TH	То	tal	FA-	PR	SA-	PR	SL	A	IVIALKS								
											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	1
313014	3D MODELLING & SIMULATION	SIM	SEC	-	-	4	-	4	2	-	-	-	-	-	25	10	25@	10	-	-	50

Total IKS Hrs for Sem. : 0 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

Learning content mapped with Theory Learning Outcomes (TLO's)aligned to **Suggested Learning** Sr.No **Theory Learning Outcomes** CO's. Pedagogies. (TLO's) and CO's. Unit - I Introduction to 3D simulation 1.1 Introduction to CAD software TLO 1.1 Navigate the CAD software interface and its applications Model and locate basic tools. 1.2 Overview of the CAD software Demonstration TLO 1.2 Develop a conceptual understanding of user interface Video 1 3D simulation. 1.3 Basic sketching and drawing Demonstrations TLO 1.3 Acquire the ability to use fundamental commands Presentations commands in CAD software for sketching, 1.4 Extrusion and basic 3D Hands-on extrusion, and basic 3D modeling. modeling 1.5 Introduction to simulation concepts **Unit - II Creating Simple 3D** Models Video 2.1 Advanced sketching and TLO 2.1 Apply parametric design principles to Demonstrations parametric design create 3D models with adjustable parameters. 2.2 Constraints and relationships in Presentations TLO 2.2 Use assemblies in CAD software, CAD software Hands-on 2 allowing them to design simple automated 2.3 Creating simple assemblies for Model components. automation Demonstration TLO 2.3 Create a hands-on project involving 2.4 Introduction to mechanical Collaborative simple 3D designs for a given application. joints learning 2.5 Hands-on Project: Designing a basic automated component **Unit - III Assembly of complex** Model 3 TLO 3.1 Apply commands in CAD software. TLO 3.2 Explore techniques for incorporating **3D** structures Demonstration electronic components into 3D designs. 3.1 Advanced 3D modeling Video TLO 3.3 Develop in creating complex Techniques Demonstrations assemblies in CAD software, considering 3.2 Incorporating electronics into Presentations **3D** Designs interconnections and joints in automation. Hands-on 3.3 Advanced assembly techniques Collaborative in CAD software learning 3.4 Interconnecting components

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

3D M	ODELLING & SIMULATION	Course Code : 313014				
Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.			
		3.5 Complex structures and mechanismsUnit - IV Rendering and Visualization4.1 Introduction to Rendering and	Model Demonstration			
4	TLO 4.1 Apply the basics of rendering and visualization in CAD software. TLO 4.2 Apply materials to 3D models and understanding their impact on rendering .	Visualization 4.2 Applying materials to 3D models 4.3 Enhancing aesthetics in 3D model 4.4 Rendering realistic 3D model visualizations	Video Demonstrations Presentations Hands-on Collaborative learning			
5	TLO 5.1 Apply dynamic simulation techniques in CAD. TLO 5.2 Simulate structural integrity of components for various stress conditions. TLO 5.3 Apply their skills to a real-world simulation project.	Unit - V Advanced Simulation Techniques 5.1 Dynamic simulation principles 5.2 Simulating designed 3D model in CAD software 5.3 Stress analysis and structural Integrity 5.4 Real-world simulation project 5.5 Integration of Design, Rendering, and Dynamic Simulation	Model Demonstration Video Demonstrations Presentations Hands-on Collaborative learning			

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of brs	Relevant
LLO 1.1 Installing properly the open source CAD software.	1	*Installation of open source CAD software (Fusion 360/ any other).	2	CO1
LLO 2.1 Explore User Interface. LLO 2.2 Explore key features of the software.	2	*Explore the user interface, key tools and features of CAD software.	2	CO1
LLO 3.1 Creating 2D shape according to the given dimensions.	3	*Creation of a given 2D shape using basic sketching tools.	2	CO1
LLO 4.1 Create, save, and export project files in CAD software.	4	*Creation of a basic 3D object from the given 2D object using extrude function.	2	CO1
LLO 5.1 Creating a new project. LLO 5.2 Upload and export project files in CAD software.	5	Design a new project, upload and export the same.	2	CO1
LLO 6.1 Creating technical layout as per design specifications. LLO 6.2 Creating a document of the layout.	6	*Creation of a technical layout and document for a given 3D model.	2	CO1
LLO 7.1 Developing proficiency in exploring the utilization of CAD cloud- based collaboration features. LLO 7.2 Enabling effective team collaboration on cloud.	7	CAD cloud-based collaboration features.	2	CO1
LLO 8.1 Importing the given image. LLO 8.2 Creating a parametric design.	8	*Creation of a parametric design of a given image.	2	CO2

13-01-2025 12:25:01 PM

3D MODELLING & SIMULATION Course Code : 313014						
Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles	Number	Relevant		
Learning Outcome (LLO)	No	/ Tutorial Titles	of hrs.	COs		
LLO 9.1 Designing an assembly of a 3D						
object.	0	Design an assembly with appropriate	2	CO2		
LLO 9.2 -Applying constraints for	9	constraints for movement of a given 5D	Z	002		
movement for a given 3D object.		object.				
LLO 10.1 Designing simple automated						
components.	10	Design a simple automated component	2	CO2		
LLO 10.2 Applying parametric principles	10	using parametric principles.	2	002		
to the component.						
LLO 11.1 Applying CAD animation tools.	11	*Creation of a simple animation of an	2	CO2		
LLO 11.2 Creating simple animation.	11	given object using CAD animation tools.	2	002		
LLO 12.1 Collaborate with a peer on an		*Collaboration using cloud-based				
assembly project using cloud-based	12	features	2	CO2		
features.						
LLO 13.1 Explore shortcut and commands						
for 2D sketch.	13	Creation of 2D sketch using shortcut and	2	CO2		
LLO 13.2 Apply the shortcut and		commands.				
commands to create a 2D sketch.						
LLO 14.1 Explore shortcut and commands						
for 3D model.	14	*Creation of 3D models using shortcut	2	CO2		
LLO 14.2 Apply the shortcut and		and commands.				
commands to create a 3D model.						
LLO 15.1 Explore the difference between		Caration of community for a since				
LI O 15.2 Create components for a given	15	creation of components for a given	2	CO3		
assembly		assembly.				
LLO 16.1 Demonstrate the ability to						
create assemblies with multiple	16	*Demonstration of assembling of joints	2	CO3		
components and joints	10	and components for a given 3D object.	2	005		
LLO 17 1 Explore the features of CAD		Creation of a basic electronic circuits				
simulation function.	17	using CAD simulation	2	CO3		
LLO 17.2 Create a basic circuit.	1,	function (Amplifier/ any other).	-	000		
LLO 18.1 Apply design principles.						
LLO 18.2 Optimize mechanical parts for	18	*Application of design principles for	2	CO3		
manufacturing.		optimizing a simple mechanical part.				
LLO 19.1 Integrate various mechanical	10	Integrating mechanical components by	2	662		
components.	19	using CAD software.	2	CO3		
LLO 20.1 Explore the features of mesh.						
LLO 20.2 Create a mesh body using 3D	20	body	2	CO3		
body.		body.				
LLO 21.1 Create a given mesh body to 3D	21	Conversion of a given mesh body to a 3D	2	CO3		
body.	<i>L</i> 1	body.	2	005		
LLO 22.1 Develop a motion study of a						
assembly.	22	*Conduction of a motion study for the	2	CO3		
LLO 22.2 Simulating its movement under		given assembly.	2	005		
different conditions.						
LLO 23.1 Explore basic rendering	_	*Application of render function to a given				
concepts.	23	simple 3D model.	2	CO4		
LLO 23.2 Apply rendering function.		1				
LLO 24.1 Explore advanced rendering						
concepts.	24	Application of render function to a	2	CO4		
LLO 24.2 Apply advanced rendering		complex 3D model.				
runcuon.						

			1	3-01-2025 12:25:01 PM			
3D MODELLING & SIMULATION Course Code : 3130							
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs			
LLO 25.1 Analyze different types of materials. LLO 25.2 Apply appropriate materials to enhance the aesthetics.	25	*Enhancement of aesthetics of a given model using various materials.	2	CO4			
LLO 26.1 Explore different lighting effects. LLO 26.2 Apply appropriate lighting effects to enhance the visualizations.	26	Enhancement of visualizations of a given model by incorporating different lighting effects.	2	CO4			
LLO 27.1 Perform stress analysis on components, ensuring structural integrity. LLO 27.2 Observe stress analysis.	27	*Stress analysis on a given object in 3D model.	2	CO5			
LLO 28.1 Perform electronic cooling on components in 3D model. LLO 28.2 Observe electronic cooling.	28	*Electronic cooling on electronic devices in 3D model.	4	CO5			
LLO 29.1 Apply simulation tools to a real-world project.	29	Develop real-world projects by applying simulation tools.	2	CO1 CO2 CO3 CO4 CO5			
Note : Out of above suggestive LLOs -							

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

• Not Applicable

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Appropriate software suitable for process automation drawings like AutoDesk Inventor, FreeCAD, SolidWorks, AutoDesk Fusion 360 etc.	All
2	Personal Computer : 8GB RAM, 500 GB HDD, I3 or higher processor	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table) : NOT APPLICABLE

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• For formative assessment of laboratory learning 25 marks. Each practical will be assessed considering 60% weightage to process, 40% weightage to product.

Summative Assessment (Assessment of Learning)

• End semester summative assessment is of 25 marks for laboratory learning.

XI. SUGGESTED COS - POS MATRIX FORM

			Programme Specific Outcomes* (PSOs)							
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO- 2	PSO- 3
CO1	2	1	1	2	1	1	2			
CO2	2	2	2	2	1	1	2			
CO3	2	2	2	2	1	1	2			
CO4	2	2	2	2	1	1	2			
CO5	CO5 2 3 3 1 1 3 1									
Legends :- High:03, Medium:02,Low:01, No Mapping: - *PSOs are to be formulated at institute level										

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Compress Coward	A Beginner's Guide to 3D Modeling: A	No Starch Press- 2019 (ISBN:
1	Cameron Coward	Guide to Autodesk Fusion 360	978-1593279264)
2	Dandy U. Shih	Parametric Modeling with Autodesk	SDC Publications- 2023 (ISBN:
	Kandy II. Shini	Fusion 360	978-1-63057-610-3)
2	Paul J. Schilling, Randy H.	Parametric Modeling with	SDC Publications- 2024 (ISBN:
3	Shih	SOLIDWORKS	978-1-63057-626-4)
4	Daniel T. Banach, Shawna	Autodogle Inventor 2024 Eccentials Dive	SDC Publications- 2024 (ISBN:
4	Lockhart, Sheila Markazi	Autodesk Inventor 2024 Essentials Plus	978-1-63057-589-2)
4	Kally I. Mundaals	Autodosly 2ds May 2024 Desigs Cuide	SDC Publications- 2024 (ISBN:
3	Keny L. Murdock	Autodesk 3ds Max 2024 Basics Guide	978-1-63057-614-1)

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://help.autodesk.com/view/fusion360/ENU/courses/	Self-paced learning for Fusion
2	https://www.youtube.com/@adskFusion/featured	Autodesk Fusion 360
3	https://www.youtube.com/playlist?	SolidWorks Tutorials for Beginners
	list=PLrOFa8sDv6jcp8E3ayUFZ	

13-01-2025 12:25:01 PM

SD M	ODELLING & SIMULATION	Course Code : 515014			
Sr.No	Link / Portal	Description			
	4iNI8uuPjXHe				
4	https://www.youtube.com/@FreeCADAcademy	Study FreeCAD software			
5	https://www.youtube.com/playlist? list=PLkMYhICFMsGYkVrkVbX4x ngskLzxTBStJ	AutoDesk Inventor Complete Learning Tutorials. Starting from Beginners level			
6	https://www.youtube.com/playlist?list=PLrZ2zKOtC DR2ZkMaK3Y thYLErPxCnT-	Learn Autodesk Fusion 360 in 30 Days for Complete Beginners			
Note	:				

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 02/07/2024

Semester - 3, K Scheme